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Abstract 

The EFSA Guidance on the environmental risk assessment (ERA) of genetically modified 

(GM) plants gives broad guidance on the design and analysis of field experiments. The 

AMIGA research project aims at providing more detailed guidance in the form of protocols 

for design and analysis. This report provides statistical elements for such protocols. 

The protocol for experimental design specifies all elements that are needed to perform a 

prospective power analysis. This includes the specification of a list of endpoints and their 

hierarchical relations, the specification of intended levels of analysis, and the specification of 

provisional limits of concern to be used as trigger values for further investigation. 

The AMIGA Power Analysis software is presented, and examples of its use are given. Two 

scenarios are illustrated, one concerning the replication in a field trial in a single environment, 

the other regarding the number of environments that would be needed in a multi-environment 

context. 

The protocol for statistical analysis presents a flow chart for approaches to be used, and shows 

how to prepare graphical representations of the results of the analysis. Emphasis is placed on 

showing estimates and confidence intervals for effects such as the ratio of expected 

abundances or the fold change. Interpretation is mainly by comparing the estimates to the 

limits of concern (equivalence tests) rather than by calculating p values from traditional tests 

to detect differences (difference tests). 

The proposed statistical analyses are illustrated with data from the AMIGA field work on 

maize in four different countries over several years, and on potato in two different countries in 

two different years. It is indicated that, depending on the research questions and expert 

choices, many different ways of analysing the data are possible. Choices, such as those of 

limits of concern, typically are provisional, and open to changes based on motivated 

reasoning.   
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1 Introduction 

The EFSA Guidance on the environmental risk assessment (ERA) of genetically modified 

(GM) plants (EFSA 2010) gives broad guidance on the design and analysis of field 

experiments. The AMIGA research project aims at providing more detailed guidance in the 

form of protocols for design and analysis (Arpaia et al. 2014). This report provides statistical 

elements for such protocols. 

For the design of experiments we focus on methods to perform a prospective power analysis 

as required by Perry et al. (2009) and EFSA (2010). An important element is the specification 

of non-zero effect sizes that are of sufficient interest. Such effect sizes (here termed limits of 

concern) are essential for power analyses, but also allow to rephrase the testing procedure in 

terms of equivalence tests. 

A commonly encountered problem in entomology is the occurrence of many taxa with many 

zero catches (per plot), and perhaps only a few specimens overall. A typical way of 

addressing this problem is omit such data from the analysis, but this raises the question of 

criteria for when to omit a taxon. In this research we have investigated alternative methods of 

statistical analysis, and will advise on the method to be used (see also Goedhart et al. 2014). 

Rare taxa are generally perceived to be of minor concern for ecological functions, and a 

flexible system to allow for this fact will be presented. On the other hand, within any system, 

risk assessors or risk managers should always have the possibility to overrule the proposed 

simple settings of limits of concern, and specify their own well-motivated values. 

The ecological situation and the practical possibilities for conducting field trials may be 

diverse across multiple biogeographical regions in Europe. As a consequence data may be 

different between field trials, e.g. because some taxa are only observed in certain regions, or 

because the identification of sampled arthropods is dependent on the varying expertise of 

local experts. We propose a hierarchical analysis to deal with such issues. 

This report (D9.4) describes the results of research in AMIGA Work Package 9, Tasks 4 

and 5. These tasks generalize the work on single-environment trials (earlier reported in 

deliverable D9.2, see van der Voet & Goedhart 2014, Goedhart & van der Voet 2014) to the 

general situation where multiple trials are performed in different biogeographical regions and 

in different years. Therefore we focus on integration methods to summarise conclusions from 

statistical analyses over multiple environments or over other factors of interest. The report is 

accompanied by the AMIGA software for power analysis as a separate deliverable D9.5. 

Suggestions on how the results of this research could be of importance for an update of the 

EFSA guidance document are given in a separate deliverable D9.6. 

The examples presented in this report are based on experiments performed in the AMIGA 

project, for maize in Spain by INIA (Cristina Chueca and team), in Slovakia by SAU (Ľudovít 

Cagáň and team), in Denmark by AU (Gabor Lövei and team) and in Sweden (Tina 

D’Hertefeldt and team), and for potato in the Netherlands by DLO (Bert Lotz, Geert Kessel 

and team) and in Ireland by TEAGASC (Ewen Mullins and team). In addition, data on 

arthropods in the potato field were obtained from WU (Joop van Loon, Jenny Lazebnik) and 
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data on soil micro-organisms from Thünen Institut (Christoph Tebbe, Astrid Näther). We 

gratefully acknowledge the input and help from these partners which was crucial in this work. 
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2 Motivation for a protocol for the statistical aspects of designing 

experimental studies of non-target effects 

2.1 Prospective power analysis 

The costs of field experiments are high and therefore field experiments should only be 

conducted if they contribute sufficiently to answering the research questions. For more 

detailed research questions the necessary size and costs of a field experiment to answer the 

questions will become higher, as can be studied in a prospective power analysis. Therefore the 

choice of the research questions is essentially a form of risk-benefit reasoning, and has to be 

done with great care before the actual planning of the field study. 

A prospective power analysis is an important instrument in the preparation of an intended 

field study. It is a prescribed part of the EFSA ERA guidance (EFSA 2010). EFSA asks for a 

power analysis of the difference tests, whereas in this document we argue that for non-target 

ERA equivalence testing is more relevant than difference testing. In the AMIGA project we 

developed software for the power analysis of both difference and equivalence tests (see 

section 3.2), which allows to compare the two types of power analysis. A power analysis for a 

difference test requires to specify an effect size, which according to EFSA (2010) will usually 

be identical to the limit of concern. In our experience with the new AMIGA Power Analysis 

tool, a power analysis for an equivalence test where the effect size is set to 0 will often give 

similar results as the power analysis for a difference test with the effect size equal to the limit 

of concern. Therefore, it does not seem very important which type of power analysis is 

performed, but in this document we will focus on equivalence tests. 

To perform a prospective power analysis the following should be known (at least in the form 

of prior estimates): 

1. the list of endpoints and a suitable hierarchy to order them 

2. a specification of the anticipated statistical distribution for each endpoint 

3. prior estimates of the mean and variation of the endpoints  

4. limits of concern for the endpoints 

5. a significance level for the tests (typically 𝛼 = 0.05) 

6. a specification of the design structure of the intended experiment (e.g. randomised 

blocks) including other varieties and or agricultural treatments in the experiment 

7. the intended method of data analysis 

In the next sections we consider some of these points in more detail. 

2.2 Research questions and a hierarchy of endpoints 

In the design of experiments it is essential to have a clear description of the research questions 

and of the proposed methodology to answer these questions. In a field study of non-target 

effects the main research question is whether the genetically modified (GM) crop is 

substantially equivalent to the comparator variety (CMP) with respect to the non-target fauna 

in the agro-ecosystem. For an operational procedure it is needed then to specify a list of 

endpoints that will be measured in the experiment. Here, ‘endpoint’ can be understood at 
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several levels. For example, the endpoint ‘Carabidae’ may refer to the total of pitfall trap 

catches per plot over the field season in an intended single-environment experiment, but it 

may also refer to the catch per plot at one specific sampling time in spring (a more refined 

level) or the average catch per plot over multiple environments (a more integrated level). In 

general, it will be possible to arrange all these possible levels hierarchically, as shown for a 

simplified example in Figure 1. 

 
Figure 1. Simplified example of a hierarchy of endpoints in which different endpoints are sampled in 

different environment at different points in time during the season.  

‘Environment’ here can denote another site or another year, or both. The tree also shows 

further integration of endpoints into a larger ‘Arthropods’ category. Risk assessors should 

establish at which level they will pose their research question. For example,  

 is there a potential concern if the GM crop would affect the carabids in August in one 

specific environment, or 

 is it sufficient to consider the year total of carabids for this environment, or  

 is it sufficient to consider the average carabid counts over multiple environments, or  

 can the research question be framed in terms of counts for functional groups, like 

predators and herbivores, or even all arthropods?  

In the data analysis we can distinguish three parts: 

1.  pre-processing of the data, e.g. logarithmic transformations, but also integration steps 

such as summing pitfall trap catches over all time points in the field season; 

2. the intended method of statistical analysis (SA) to estimate effects from the data, as 

will be further discussed in chapters 4 and 5; 

3. the intended method of equivalence analysis (EA) to integrate estimated effects to 

higher levels in the hierarchy. 
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Figure 2 gives two simple examples, A and B, of the structure of an intended data-analysis for 

a single field experiment. In hierarchy A it is assumed that the measured endpoints are 

restricted to ten arthropod taxa, and that data will be collected at seven time points during the 

field season. A possible choice may be not to study the endpoints at the time-point level, but 

only at the level of the season total counts. This is especially practical for rare taxa. Summing 

is indicated by the ‘Sum’ pre-processing step; the underlining of ‘timepoint’ is meant to 

indicate that in this step some kind of summary over time-points is made. After this, the data 

will be analysed in a statistical analysis (SA step) to provide estimates and confidence 

intervals for the ten effects. The statistical analysis would normally involve an ANOVA type 

of analysis. Underlining of ‘Data’ indicates that Data are summarized to give effects. After 

this step each of the effects can be judged for equivalence. In the final step, denoted by EAall, 

the equivalence for the individual taxa are combined in an overall NTO equivalence. EAall 

denotes that each individual endpoint should meet its equivalence criterion.  

A 

 

B 

 

Figure 2. Two simple examples of alternative logical trees for analysis of Arthropod count data in a 

single-environment NTO study of a GM maize. Sum = summation of data. SA = statistical 

analysis. EAall = equivalence analysis requiring all concern quotients to be within limits. 

Hierarchy B in Figure 2 presents an alternative. Here the data are analysed at the time-point 

level, and the effects at all time-points are required to fulfil equivalence criteria. Note that the 

expected counts in the statistical analysis will be much lower as compared to hierarchy A, and 

therefore it will be more difficult to have sufficient power for all 10 x 7 = 70 endpoints. In 

fact, scheme B may not be practical at all, when it is expected that some species are not 

present at all (expected counts zero) during parts of the field season. In principle, the scheme 

could be adapted by specifying for each taxon the relevant time intervals during the season. 

The first EAall step in hierarchy B could be replaced by an EAav step implying that each taxon 

should on average meet the equivalence limits during the growing season. This is much less 

strict than an EAall equivalence analysis. 

Power analysis is related to estimating effects from data. Therefore the logical trees for 

analysis are relevant to see at which level the endpoints have to be ordered when performing a 

prospective power analysis. E.g. in hierarchies A and B the effects per taxon (summed over 

time-points) are relevant; in hierarchy B the effects per taxon per time-point could also be of 
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interest. If this is the case, then the power analysis should be performed at the level of the 

time-point. 

The key message of this example is that alternative logical hierarchies for the analysis are 

possible, and that these choices can have a big impact on the number of required replications 

and thus on the cost-benefit reasoning relevant for the planning of field studies. Hierarchy B 

for example will require more replications than hierarchy A because it is required that 

equivalence is met for every time-point rather than for the sum across time-points.  

Further details of the data analysis methods are discussed in relation to the statistical analysis 

protocol (Chapters 4 and 5).  

2.3 Limits of concern 

EFSA (2010), in the general section on problem formulation, states the following regarding 

limits of concern (LoC): 

Finally, for each measurement endpoint, the level of environmental protection to be preserved is 

expressed through the setting of ‘limits of concern’ which may take one of two forms. For 

studies in the environment(s) that are controlled [...] the limits of concern will usually be trigger 

values which, if exceeded, will either lead to conclusions on risks or the need for further 

assessment in receiving environment(s). For field studies, the limits of concern will reflect more 

directly the minimum effect that is considered to potentially lead to harm [...]. If these limits are 

exceeded, then detailed quantitative modelling of exposure may be required to scale up effects 

at the field level both temporally and spatially. Limits of concern can be defined by e.g. 

literature data, modelling, existing knowledge and policy goals. 

It is not entirely clear which distinction is meant between the use of LoC in controlled studies 

(semi-field trials, e.g. using cages in the field) and in field studies. In both cases LoC is 

functioning as a trigger value for further attention. The word ‘potentially’ makes clear that 

exceeding the LoC does not necessarily indicate a harm. In fact, the EFSA Guidance is not 

fully consistent, because in other places (e.g. Glossary, p. 111) LoCs are defined as ‘the 

minimum ecological effects that are deemed biologically relevant and that are deemed of 

sufficient magnitude to cause harm’. Therefore we should distinguish: 

1. Limits of Concern as system-based and context-dependent concepts, indicating limits 

of harm to the environment: these are useful concepts, but will require further 

modelling to quantify, and 

2. Limits of Concern as pragmatic trigger values for further assessment after field trial 

data analysis: these are used for equivalence tests, exceeding LoC is not necessarily 

indicating harm to the environment. 

In this report LoC is used in the second meaning. 

It is not easy to set values for the LoCs. These values will preferably be based on ecological 

expertise and, according to EFSA (2010), ‘can be defined by e.g. literature data, modelling, 

existing knowledge and policy goals’. In the AMIGA project LoCs were tentatively set to 0.5 

(i.e. 50% decrease) and 2 (i.e. 100% increase) for continuous nonnegative data, and for counts 

at abundance levels of 10 or higher. These values are provisional, and open for discussion. 
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Therefore all results which depend on these LoCs (such as all equivalence test results) should 

be seen as the results of a scenario study using these provisional LoCs. Alternative scenarios 

can be considered if other appropriate LoC values would be proposed. Note that LoCs should 

in principle be defined separately for each endpoint; therefore the choice of the same LoCs for 

all endpoints in this report should not be read as a general suggestion. 

A main problem with count data is the increasing variability at low abundances, see for 

example Figure 1 in van der Voet and Goedhart (2015) showing the relation between the 

coefficient of variation (CV) and the expected abundance. This has often led researchers to 

omit low abundance data from their analyses (e.g. Prasifka et al. 2008). Here we suggest 

another approach, based on the idea that observing more variable effects at low abundances is 

just a consequence of the statistical properties, and therefore will and should not be seen by 

ecologists as reasons of concern. Thus, a flexible system of assigning Limits of Concern for 

taxa with low abundance may be used to reflect the biological ranges of no concern. The 

system we propose employs a threshold abundance value 𝜇0 below which scaling of the LoCs 

is applied. For observed means m below the threshold 𝜇0 the logarithms of the limits of 

concern are scaled by a factor √𝜇0/𝑚,where m is the average of the counts for the GMO and 

the CMP. This implies that boundaries for equivalence testing become wider for lower 

abundances, corresponding to less concern at these low levels. For example, with LoCs at 0.5 

and 2 and 𝜇0 = 10, the adapted LoCs are 0.38 and 2.7 for taxa with a mean abundance of 5 per 

plot, and 0.11 and 9.0 for taxa with an abundance of 1 per plot. Figure 3 displays the upper 

limit of concern on the original ratio scale for two cut-off values 10 and 5. Also see Figure 14 

for how this would work for real data. 

 

Figure 3. Upper Limit of Concern on the original ratio scale as a function of μ employing scaling on 

the log scale with a factor √(10/μ) for μ < 10 (black line) and a factor √(5/μ) for μ < 5 (red line). 

The use of √1 𝑚⁄  in the scaling factor for the logarithms of the LoCs can be motivated in the 

following way. Suppose we have two samples each of size n from a Poisson distribution with 

means 𝜇1 and 𝜇2 respectively. The maximum likelihood estimator for the log-ratio Δ =

log(𝜇1 𝜇2⁄ ) is given by log(Xm/Ym) in which Xm and Ym are the respective sample means. 

Suppose for simplicity that 𝜇1 = 𝜇2 = 𝜇. The large sample variance of this estimator then 

equals 2 (𝑛𝜇)⁄ . Consequently the asymptotic standard error on the log-ratio scale is 



11 

 

proportional to √1 𝜇⁄  and the length of the confidence interval is thus also proportional to 

√1 𝜇⁄ . This implies that, on the log-ratio scale, the length of the confidence interval in case 

𝜇=1 is a factor √10 larger than for 𝜇=10. It is then natural to use √1 𝑚⁄  as a scaling factor for 

the logarithm of the LoCs for means smaller than 10. 

This is basically statistical large sample theory and therefore a small simulation study was 

carried out to see whether this approach is also useful for small samples. Suppose that for 

𝜇=10 and a certain sample size n we have derived symmetric limits of concern, on the log 

scale, such that approximately 98% of simulated intervals for the log-ratio Δ lie within these 

limits of concern. LoCs for other values of 𝜇 are then obtained by multiplication of these 

LoCs for 𝜇=10 with a factor of √10 𝜇⁄ . The simulated coverage for this new situation should 

then be similar to 98%. This was done for values of 𝜇 equal to 6, 4, 2, 1 and 0.5 and sample 

size n equal to 6, 10, 20, 40 and 80. The simulated coverages and the original LoCs on the log 

scale for 𝜇=10 are given in Table 1. Note that the lower and upper LoC were taken to be 

symmetric, i.e. Log(LoClow) = - Log(LoCupp). 

The results in Table 1 indicate that for large sample sizes, e.g. n =80, the proposed 

multiplication of the LoCs give similar coverage probabilities for all values of 𝜇. However, 

for smaller sample sizes the coverage probabilities become smaller for smaller values of 𝜇 

indicating that the proposed multiplication factor √𝜇0/𝑚 for the logarithm of the LoCs might 

still be too small. Further research could indicate a more precise multiplication factor. 

However the proposal does work as a first approximation, is simple to apply and will 

therefore be used in the sequel.  

Table 1. Percentage coverage for the log-ratio of two independent samples from the Poisson 

distribution with mean 𝜇. See text for further explanation 

%Coverage n = 6 n = 10 n = 20 n = 40 n = 80 

Log(LoCupp) 0.793 0.615 0.421 0.305 0.227 

𝜇 = 10 97.3 97.7 97.0 97.4 98.9 

𝜇 = 6 97.3 97.0 96.6 97.9 99.1 

𝜇 = 4 95.5 97.3 96.7 98.0 98.6 

𝜇 = 2 93.8 95.1 96.5 96.8 98.8 

𝜇 = 1 88.4 93.8 95.0 96.7 98.7 

   𝜇 = 0.5 80.8 89.0 92.8 95.2 98.5 

2.4 Intended data analysis  

Already at the planning stage of an experiment, or a series of experiments, it is required to 

specify the statistical analysis of the data that will be observed later. The statistical analysis 

should be guided by the hierarchy of endpoints defined earlier, e.g. should the statistical 

analysis take place for each taxon at each time-point, for each taxon for the sums over the 

field-season, for the sums over the taxa in functional groups, etc.?. Specification of the 

statistical analysis method iso needed to specify the correct information for the prospective 
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power analysis. The proposed methods of statistical analysis are further discussed in 

section 4.1. 
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3 Protocol and software for the statistical aspects of designing 

experimental studies of non-target effects 

Attention is required before a field trial is performed to ensure that the experiment will be 

meaningful to answer research questions. We present relevant points from a statistical 

viewpoint as a checklist. This list is an update of the checklist given in Deliverable D9.2a. 

3.1 Checklist 

1. Describe the questions the experiment is meant to answer, in words. 

2. Decide on the site(s) and the year(s)/season(s) for the experiment based on the questions to be 

answered and feasibility.  

3. Decide on the spatio-temporal and/or taxonomic integration levels at which conclusions 

regarding the research questions have to be formulated. 

4. Prepare the list of endpoints. This may typically be organised in a hierarchy of endpoints. At 

the lower levels endpoints may be open to the possibilities of observation in the field (e.g. it 

may be impossible to predict if individual arthropod taxa will or will not be present under the 

conditions of the experiment).  

5. Construct a logical tree for the analysis of all observed endpoints, showing how data may be 

pre-processed (data pre-processing steps), how effects will be estimated from the data by 

statistical analysis (statistical analysis steps), and how conclusions on equivalence will 

follow from the collection of effects and the limits of concern (equivalence analysis steps). 

The branches of the trees may have equal or different schemes for the subtrees. See sections 

6.2.1 and 6.3.1 for examples of logical trees for analysis. In general, many different trees will 

be possible; the chosen tree should therefore be motivated. 

6. For count or fraction data, a typical way of pre-processing the data is to sum over primary 

levels, e.g. over individual time points to obtain year totals, or over individual taxa to obtain 

totals for functional groups. 

7. Indicate the nature of the statistical analysis steps in the logical tree as being a statistical 

analysis (SA, where the effects are calculated at the same level as the data), a statistical 

hierarchical analysis (SHA, where the analysed data are at a lower level of integration than the 

estimated effects) or a statistical meta-analysis (SMA, where effect estimates of a previous 

analysis are integrated to a higher level). More guidance on SA is provided in section 5.2, 

more guidance on SHA and SMA in section 5.3. 

8. Indicate the nature of the equivalence analysis integration steps in the logical tree as 

requiring equivalence conclusion to be valid for all members (EAall) or as allowing members 

to compensate for each other by averaging concern quotients (EAav). More guidance is given 

in section 5.5. 

9. For each endpoint to be used in the statistical analysis classify the measurement type, e.g. 

non-negative continuous data, count data or fractions (percentage) data. 

10. For each endpoint to be tested formulate the Limits of Concern (LOCs). For each endpoint 

one lower and/or one upper LOCs can be set. For non-negative continuous and count data 

these will typically be ratios of GMO divided by CMP true values. The LOCs define the null 

hypotheses for equivalence tests. 

11. For endpoints which are counts, decide how to address low abundance data. Either define a 

criterion to omit uninformative low counts (e.g. abundance below 5, or CV larger than 100%), 

or adopt a rule that LOCs will be set as a function of the expected or observed abundance in 

the field. A proposed scaling factor for the log(LOC) expressed as a factor is √µ0 𝑚⁄ , where 

m is the expected or observed abundance in the experiment, and µ0 is a chosen threshold 

abundance below which concern limits will be widened (e.g. µ0 = 10). 

12. Set the significance levels (α) for statistical testing. Conventionally the level (size) will be 

0.05. In the TOST approach to equivalence testing (Schuirmann 1987) the significance level 
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of a two-sided confidence interval is twice the significance level for the equivalence test, 

therefore employing a two-sided (1-2α ) confidence interval corresponds with (1-2α ) 

confidence equivalence tests. 

13. Set the required power of the equivalence tests to detect a zero differences. Under the null 

hypothesis the effect sizes will be equal to the LoCs. Conventional values for power are 

between 70 and 90%.  

14. Describe the structure of the proposed experimental design, e.g. completely randomized, 

randomized blocks, split-plot, balanced incomplete blocks. 

15. Describe the experimental units (typically plots or sub-plots), and give details of the 

blocking structure (e.g. 4 main plots per randomized block, each main plot split into 3 sub-

plots) and the treatment structure (e.g. three types of spraying and four crop varieties). Also 

describe if interactions should be included. 

16. Describe whether repeated measurements will be taken from the same experimental unit. 

17. Provide a model formula specifying how the data will be analysed, using the syntax of one of 

the common software tools for statistical analysis (e.g. SAS, GenStat, R), for example 

block/plot/subplot + treatment + variety. Include terms and a correlation structure for repeated 

measurements if used. Indicate which factors are random rather than fixed. 

18. For each primary endpoint provide prior estimates of central value and variation for a 

measurement on a single experimental unit. For non-negative continuous and count data the 

prior estimates for central values will typically be expected values or geometric means, and 

the prior estimates for variation will typically be coefficients of variation. Such values can be 

derived from previous experiments or based on expert knowledge. 

19. For each endpoint specify the simplest statistical analysis method that will be used (the 

analysis method may need to be adapted if there are unexpected deviations in the execution of 

the field study or unexpected data). See the statistical analysis protocol for details. 

20. Based on the prior estimates estimate the power of the proposed design as a function of 

replication, for the equivalence test at the chosen integration level(s), see point 3. For this the 

AMIGA Power Analysis software may be used (see 3.2). 

21. From the power curves derive the replication of the comparison of GMO to CMP in the 

proposed design. 

22. If the calculated minimal replication cannot be realized in practice, the power is insufficient. 

In such case adapt the design or reformulate the research questions. 

23. Randomise the treatments over the experimental units taking proper account of the design. 

3.2 AMIGA Power Analysis program and R scripts for data analysis 

To guide the design of ERA field trials, specific methods for power analysis for statistical 

tests based on field trial count data have been developed in the AMIGA project, as described 

in this report (see also Goedhart et al. 2014, van der Voet and Goedhart 2015). This has 

resulted in publically available software for this purpose in the form of the AMIGA Power 

Analysis tool (Deliverable 9.5). 

To perform power analysis for ERA field trials, a complete definition of the field trial and 

envisioned method of analysis is required, along with a data model for the comparator variety 

for each endpoint. So the tool effectively requires all information described by items 1-19 of 

the checklist of section 3.1, and systematically asks for this information using the following 

steps: 

1. Define the endpoints and their limits of concern: A general issue for establishing 

sample sizes of ERA field trials is that statistical power can only be evaluated given 

specified relevant effect sizes. These relevant effect sizes should bound a range of 

GMO vs. comparator differences that are not considered to be of any biological 
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concern. Hence, it is considered of no importance when the statistical power for effect 

sizes within these so-called limits of concern (LoCs) is low. Without specification of 

LoCs by experts no power analysis can be performed. In AMIGA tentative limits of 

concern have been set for non-target arthropods and soil organisms at two-fold 

increases or decreases with respect to the comparator abundance provided this 

abundance is not too low. 

2. Define the endpoint data models: The Power Analysis tool adopts a uniform way to 

describe the data model of the comparator variety in terms of a statistical distribution 

(e.g. Poisson or overdispersed Poisson), a mean and a CV. 

3. Specify the experimental setup: All elements relevant for the analysis are also 

relevant for the power analysis. Therefore, a complete description of the experimental 

setup must be provided, including the experimental design, varieties additional to the 

GMO and CMP, additional agricultural treatment factors, and possible interactions 

between these additional factors and the GMO or comparator. 

4. Specify the method of analysis and power analysis: Specify which statistical 

method(s) will be used for equivalence and difference testing and specify the range of 

replications for which the power should be computed. The power can be calculated by 

Monte Carlo simulation or by an approximate method (Lyles et al. 2007). 

Having this information, the Power Analysis tool computes the power for different numbers 

of replications and various levels of difference between the LoCs (checklist item 19) for all 

specified endpoints individually, and combined using the concern quotient CQ (see Section 

5.5). From the results, the required number of replications can be derived (checklist item 20, 

21). An additional feature of the tool is that it can produce a data template and analysis script 

(written in the programming language R) that can be used directly for analysis of the specified 

field trial. 

For the purpose of the experimental design of ERA NTO field trials the methods and software 

can be used in two scenarios. The first scenario is a single-environment field trial (i.e. a field 

trial in single location/year) in which the aim is to determine the number of replicates needed 

to obtain sufficient statistical power. The second scenario is a multi-environment field trial in 

which the aim is to determine the number of environments (i.e. location/year combinations) in 

order to obtain sufficient statistical power. A case study based on historical data provided by 

Prasifka et al. (2008) has been performed and is  reported here. More details will be conveyed 

later (Kruisselbrink et al, in prep.). 

With regard to the risk management question, it is not always clear if the ERA should lead to 

a general conclusion for Europe, to specific conclusions for each biogeographical zone, or to 

specific conclusions for each field site. Obviously, the requirements with respect to the overall 

needed number of replications may depend on the question at hand. 
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4 Motivation for a protocol for statistical equivalence analysis of 

experimental studies of non-target effects 

4.1 Methods of statistical analysis 

In field studies for environmental risk assessment of GMOs typically counts of various taxa 

are observed, sometimes supplemented with continuous non-negative data and/or percentage 

data. Observed counts are generally log transformed by entomologists, typically after the 

addition of one to avoid taking the logarithm of zero, to achieve homogeneity of variance 

after which statistical methods based on the normal distribution, such as analysis of variance, 

are used. Alternatively the squared root transform of counts is taken. In other fields of 

ecological research counts are nowadays statistically analysed by log linear models which rely 

on distributions specific for count data such as the Poisson, the overdispersed Poisson and the 

negative binomial distribution (McCullagh & Nelder 1989). Log-linear models for ecological 

count data have been advocated for many years, see e.g. Sileshi (2006), Ver Hoef and Boveng 

(2007), O’Hara and Kotze (2010) and Szöcs and Schäfer (2015). In a simulation study 

Goedhart and van der Voet (2014) found that the transformation approach has good properties 

when it comes to difference testing but that confidence intervals for the true ratio of the mean 

of the GMO and the CMP have poor coverage probabilities. The coverage probability of the 

log-linear model employing the overdispersed Poisson distribution is generally satisfactory 

even when data are simulated according to other count distributions. They therefore 

recommend a statistical analysis according to the overdispersed Poisson model for count data 

when it comes to equivalence testing and this method of analysis will therefore be used in the 

sequel. 

Continuous non-negative data are usually analysed by first applying a log-transformation and 

then doing an ANOVA type of analysis. Percentages data are commonly analysed by means 

of logistic regression which employs the (overdispersed) binomial distribution. 

4.2 Adapted limits of concern for count data of non-abundant taxa 

In section 2.3 a flexible system of assigning Limits of Concern for taxa with low abundance 

was proposed to reflect the biological ranges of no concern. Here we present more fully the 

proposed system including additional considerations for plotting and interpretation. 

In the proposal Limits of Concern are based on a threshold abundance value below which 

scaling is applied, and special rules for very low abundances (zero counts for GMO or CMP): 

1. Below a limit abundance value, e.g. 𝜇0=10, it is proposed to apply a scaling to the 

LoCs for taxa. The scaling factor is √𝜇0 𝑚⁄ , to be applied to the logarithms of the 

LoCs, in which m is the combined mean of the GMO and CMP. This implies that 

boundaries become wider for lower abundances, corresponding to less concern at 

these low levels. For example, with basic LoCs at 0.5 and 2 and a threshold of 𝜇0=10 

the adapted LoCs are 0.38 and 2.7 for taxa with an abundance of 5 per plot, and 0.11 

and 9.0 for taxa with an abundance of 1 per plot. 
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2. If for either the GMO or CMP no single specimen is found (zero average), then the 

ratio is zero or infinite, which cannot be analysed on a logarithmic scale. It is proposed 

to re-calculate the ratio with the zero average replaced by the lowest possible value, 

which is one over the number of replications. This ratio (without a confidence 

interval) will only be displayed in case it falls outside the scaled LoCs. 

In a graphical representation of the results a background colouring may be applied to the area 

within the (scaled) LoCs to indicate its meaning as equivalence area, i.e. the observed data do 

not indicate concern under the specified criteria. On the other hand, no background colouring 

is applied to the area outside the LoCs, because in the proposed system the LoCs only act as a 

trigger for further consideration, and values outside the LoCs do not indicate the presence of 

environmental harm.  

4.3 Summarising over different dimensions 

In the design phase of the experiment a hierarchical tree of endpoints has been prepared 

(section 2.2). The statistical analysis of equivalence should follow this tree by stepwise 

integration of each sub-collection of endpoints to its connecting node endpoint. In general 

there are three types of analysis: 

1. data pre-processing 

2. data analysis 

3. combination of effects in an equivalence analysis 

In a typical environmental risk assessment study which accounts for biogeographical variation 

count data are obtained for many taxa, in multiple years and from multiple locations (sites). 

However, the data selected for analysis may have different taxa for different space-time 

combinations. A general question is how data should be integrated to obtain an overall 

conclusion for the risk assessment (see Figure 4). 

 
Figure 4. Possible routes for integration over endpoints. 
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As can be seen in Figure 4, there are six possible ways to summarise conclusions: 

1. First summarise over time, then over space, then over taxa; 

2. First summarise over time, then over taxa, then over space; 

3. First summarise over space, then over time, then over taxa; 

4. First summarise over space, then over taxa, then over time; 

5. First summarise over taxa, then over time, then over space; 

6. First summarise over taxa, then over space, then over time. 

For each integration step, there are in principle several methods for summarising: 

1. Pre-processing of the data, e.g. summing counts over taxa or summing over time for 

the same experimental unit; 

2. Joint data analysis – this is applicable for summarising over time or over space, but 

only when the same taxa are addressed; 

3. Multi-criteria decision analysis applied to effect estimates – this method is applicable 

for all forms of summarising. 

We further distinguish between various forms of data analysis. In the hierarchies A and B 

given in Figure 2 the statistical analysis SA estimates Effects from Data without further 

integration: in hierarchy A Data per taxon were summarized to an Effect per taxon, while in 

hierarchy B Data per time-point were summarized to an Effect per time-point. In hierarchy B 

however the statistical analysis could also, in one go, summarize over time-points giving a 

single effect per taxon. Such an analysis will be termed a statistical hierarchical analysis, or 

SHA for short, because it estimates effects for a higher level in the hierarchy.  

Individually estimated effects, e.g. for several taxa, can be combined in a single effect and a 

corresponding confidence interval by means of a statistical meta-analysis, or SMA for short. 

This provides an objective way of combining information from separate effects, while taking 

into account the different standard errors for the individual effects see e.g. Hardy and Wright 

(1996). There are basically two versions of meta-analysis. The “fixed” version assumes that 

estimated effects have a common mean and individually known variances. The overall effect 

is then simply the weighted average of the individual effects, in which the individual 

variances are used as weights. The “random” version on the other hand allows for 

heterogeneity of the individual effects by introducing a between individuals component of 

variance. The statistical technique REML can then be used to estimate the overall effect and 

to provide a confidence interval for the overall effect. We used the “random” version 

throughout this report and applied it to the estimated log-ratio effects. Note that a 

meta-analysis implicitly assumes that the individual effects are statistically independent. This 

might be a strong assumption when combining information for different taxa within the same 

experiment. Also note that a SMA implicitly assumes that negative effects, e.g. for a taxon, 

can be compensated by positive effects for another taxon. 

In the equivalence analysis, the simplest option is to require that effects are within limits of 

concern for all endpoints (EAall). Alternatively equivalence could be met on average and this 

is denoted by EAav. Finally, the equivalence analysis (EA) can be performed both on the 
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estimated effects (point estimates), and on the confidence limit which gives rise to the most 

concern. The latter EA analysis can be termed a worst case analysis. 

Table 2 summarizes the different possible steps in building a hierarchy for the analysis of 

observed data. Note that these steps also form a hierarchy in the sense that an element cannot 

be followed by an element which is in a class above the class of the current element.  

Table 2. Elements of the hierarchy for data analysis and integration of equivalence 

Element Explanation 

Data pre-processing 

SUM Summing the data. For example summing counts of a taxon over different points 

in time, or summing counts of taxa within the same functional group to give a 

single count for the functional group 

Statistical analysis 

SA Statistical Analysis of data resulting in estimated effects at the same level of the 

hierarchy. i.e. without integration of other levels in the hierarchy. For example 

estimation of the effect for a single taxon per time-point. 

SHA Statistical Hierarchical Analysis of data resulting in estimated effects at a higher 

level of the hierarchy. i.e. including integration of other levels in the hierarchy. 

For example estimation of the effect for a single taxon summarized over 

time-points. 

SMA Statistical Meta-Analysis which combines individual effects into a single 

combined effect. For example combining effects for taxa within the same 

functional group to give a single effect for the functional group, or combining 

effect for individual environments to give a single effect across environments 

Equivalence analysis (multi-criteria decision analysis) 

EAall Equivalence analysis of estimated effects in which all estimated effects should 

meet the equivalence criterion. This step can be present several time, for example 

when moving from 1) equivalence per functional group per year per site to 2) 

equivalence per year per site to 3) equivalence per site to 4) overall equivalence 

EAav Equivalence analysis of estimated effects in which the average of estimated 

effects should meet the equivalence criterion. 

Note that summarising by means of SHA, SMA or EAav implies that we are interested in an 

average effect. In contrast, EAall considers all individual effects on their own. 

4.3.1 Multi-criteria decision analysis 

A statistical analyses result in estimated effects, i.e. differences between GMO and CMP at an 

appropriate scale (often the log scale). These effects, and their confidence limits, can be 

standardized by scaling to a no-concern yardstick which represents a minimum limit of 

potential biological relevance, i.e. the Limit of Concern (LoC). For count data, if 𝑄 is the 

estimated ratio for GMO vs. CMP, and if lower and upper Limits of Concern are also 

expressed as ratios 𝐿𝑜𝐶𝑙𝑜𝑤 and 𝐿𝑜𝐶𝑢𝑝𝑝 (which are assumed to be respectively below 1 and 
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above 1, e.g. 0.5 and 2), then for further integration concern quotients CQ can be calculated, 

which are non-negative scores that express absence of concern for values up to 1:  

Two-sided: 𝐶𝑄 = max [
log(𝑄)

log(𝐿𝑜𝐶𝑙𝑜𝑤)
 ,

log(𝑄)

log(𝐿𝑜𝐶𝑢𝑝𝑝)
]

One-sided left: 𝐶𝑄 = max [
log(𝑄)

log(𝐿𝑜𝐶𝑙𝑜𝑤)
 , 0            ]

One-sided right: 𝐶𝑄 = max [           0          ,
log(𝑄)

log(𝐿𝑜𝐶𝑢𝑝𝑝)
 ]

 

For integration over time, space and/or endpoints the CQ values can be used as input in a 

multi-criteria decision analysis (MCDA) model.  

In the simple approach for equivalence analysis (EA) that is proposed in this report, and for 

which examples are given in Chapter 6, CQ values up to 1 are considered acceptable, and 

values above 1 are a trigger for further investigation. Two options may be considered for 

combining effects of multiple indicators: 

1. EAall by taking the maximum, i.e. no compromising, the worst case defines the overall 

concern, or  

2. EAav by taking the average, i.e. bad scores for one indicator can be compensated by 

good scores for another.  

The proposed MCDA approach is a special and simple case of a more flexible MCDA 

method, the Balance Of Acceptability model (van der Voet et al. 2014). This model allows 

specification of weights to be applied in a weighted rather than unweighted average. This is 

open for further refinement, e.g. weighting could be related to perceived ecological relevance, 

or statistical precision. Further it is possible to specify a smooth transition between given 

acceptable and unacceptable CQ values, and intermediate approaches between EAall and EAav 

by specification of a compensability parameter. 

4.4 Confidence intervals vs. tests, graphical summaries 

Often the final aim of an NTO study is framed as testing hypotheses about unintended 

differences. This is then presented as a list of test results such as p values resulting from 

difference tests. However, this way of presentation obscures the magnitude of the observed 

differences, the precision of these estimates and the criteria (limits of concern) against which 

the differences should be interpreted. It is much more insightful to present the results as 

confidence intervals for the true effects, together with the limits of concern.  

Confidence intervals for effects and limits of concern can be displayed for multiple endpoints 

together in a single graph. This works fine for effects that are at the same scale, for example 

the ratio scale which compares the GMO mean to the CMP mean. A more general way of 

plotting allows a simultaneous display of endpoints measured at different scales, and this may 

also be useful when limits of concern are very diverse among endpoints. For this, the effect 

estimates can be scaled. The scaled dimensionless measure is called the LoC Scaled 
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Difference (LoCSDIF). Depending on the LoCs scaling may be the same or different for 

negative and positive deviations, but for one-sided problems, i.e. when there is only one LoC, 

the same scaling factor is used for both positive and negative deviations. For count data, if 𝑄 

is the estimated ratio for GMO vs. CMP, and if lower and upper Limits of Concern are also 

expressed as ratios 𝐿𝑜𝐶𝑙𝑜𝑤 and 𝐿𝑜𝐶𝑢𝑝𝑝 (which are assumed to be respectively below 1 and 

above 1, e.g. 0.5 and 2), then the LoCSDIF is defined as follows 

Two-sided: 𝐿𝑜𝐶𝑆𝐷𝐼𝐹 =

{
 
 

 
 

log(𝑄)

−log(𝐿𝑜𝐶𝑙𝑜𝑤)
    if 𝑄 < 1

log(𝑄)

log(𝐿𝑜𝐶𝑢𝑝𝑝)
       if 𝑄 ≥ 1

One-sided left: 𝐿𝑜𝐶𝑆𝐷𝐼𝐹 =
log(𝑄)

−log(𝐿𝑜𝐶𝑙𝑜𝑤)
                       

One-sided right: 𝐿𝑜𝐶𝑆𝐷𝐼𝐹 =
log(𝑄)

log(𝐿𝑜𝐶𝑢𝑝𝑝)
                         

 

An artificial example of plots on the Q scale and the LoCSDIF scale is shown in Figure 5 with 

unequal limits of concern for three taxa. In the upper plot the Aaidae and Beidae taxa are seen 

to be significantly different from zero because their intervals do not overlap with the equality 

line at 1. But the four-fold decrease for Beidae is not considered a concern, whereas the two-

fold increase for Aaidae is a concern. In a similar way the larger (three-fold) increase for 

Ceidae is not considered a concern. The ordering of concerns is easier seen in the lower plot 

for the LoC scaled differences. Note that for Ceidae scaling on the right is done with the 

upper LoC which is 16, while scaling on the left employs the lower LoC which is 0.5. 

 

 

Figure 5. Artificial example of graphical representation of comparative analysis results. Point 

estimates of the expected ratio of test variety (here BT maize) and comparator variety (here 

isogenic maize) with 90% confidence limits, and shown in relation to provisional limits of 

concern. 
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Real examples of plots showing both types of graphical representation are shown in chapter 6. 

5 Protocol for statistical equivalence analysis of non-target effects 

In this chapter we present a protocol for the statistical analysis of data from ERA field trials. 

In principle, the methods of statistical analysis have already been decided at the time of 

planning the experiment, but it may be needed to update the methods based on the context or 

unexpected findings.  

5.1 General 

1. Check and if necessary update the list of endpoints that was established in the design phase. 

Motivate any change. 

2. Check and if necessary update the logical tree for the analysis of all observed endpoints. 

Motivate any change. 

The logical tree for analysis shows how data may be pre-processed (data pre-processing 

steps), how effects will be estimated from the data by statistical analysis (statistical analysis 

steps), and how conclusions on equivalence will follow from the set of all estimated effects 

and the limits of concern (equivalence analysis steps). The branches of the trees may have 

equal or different schemes for the subtrees. See sections 6.2.1 and 6.3.1 for examples of 

logical trees for analysis. In general, many different trees will be possible; therefore the 

chosen tree should be motivated. 

a. For count or fraction data, a typical way of pre-processing the data is to sum over 

primary levels, e.g. over individual time points to obtain year totals, or over individual 

taxa to obtain totals for functional groups. 

b. Indicate the nature of the statistical analysis steps in the logical tree as being a 

statistical analysis (SA, where the effects are calculated at the same level as the data), 

a statistical hierarchical analysis (SHA, where the analysed data are at a lower level of 

integration than the estimated effects) or a statistical meta-analysis (SMA, where effect 

estimates of a previous analysis are integrated to a higher level). More guidance on SA is 

provided in section 5.2, more guidance on SHA and SMA in section 5.3. 

c. Indicate the nature of the equivalence analysis integration steps in the logical tree as 

requiring equivalence conclusion to be valid for all members (EAall) or as allowing 

members to compensate for each other by averaging of concern quotients (EAav). More 

guidance is given in section 5.5. 

3. Graphical summaries of results are to be prepared for estimated effects (section 5.4) and, if 

deemed useful, for LoC-scaled differences (section 5.5). 

5.2 Statistical analysis of single endpoints 

The basic approach is to calculate estimates and 90% confidence intervals for effects (GMO 

vs. CMP differences, expressed on an appropriate scale), and then compare these to the 

(possibly provisional) limits of concern which were specified during the design of the 

experiment (see Figure 6 for a flowchart for the statistical analysis of a single endpoint). 

1. The method of statistical analysis depends on the type of endpoint. For continuous endpoints 

with necessarily positive values it is recommended to perform an analysis on the log 

transformed data. For discrete endpoints such as count data and fraction data it is 

recommended to perform an analysis on the original scale using an appropriate statistical 

distribution and link function. 
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2. Analyse the transformed data by linear models: ANOVA if the design is balanced, or by a 

mixed model (REML) if they are not. 

3. Analyse the untransformed data by generalized linear models (GLM), or by a generalized 

linear mixed models (GLMM) in case there are additional random effects in the model. Allow 

for over-dispersion in counts and fractions. 

4. Check whether statistical assumptions are reasonable, e.g. as follows: 

a. Outliers: check data points with large standardised residuals. Compare analyses with 

and without such data points in a sensitivity analysis. 

b. A QQ plot of the residuals should show approximately a straight line 

c. A plot of residuals vs. fitted values can be used to check if there is heteroscedasticity.  

5. If statistical assumptions are unreasonable, then an ad-hoc strategy will have to be followed. 

For example, another variance function might be more appropriate or non-parametric tests 

may be used. This protocol further assumes that the model fits sufficiently well. 

6. Extract the estimated difference between the GMO and CMP from the statistical model, e.g. 

the log-ratio for count data, along with the standard error of the estimate. Employs these to 

calculate a two-sided 90% interval taking account of the degrees of freedom for residual. 

Display the confidence interval in a graph along with the LoCs.  Note: for visual display it is 

recommended to calculate and display both limits, even if there is only one LoC, for either a 

decrease or an increase. 

 

 

Figure 6. Flow chart for the statistical analysis of single endpoints. ANOVA = analysis of variance, 

REML = residual maximum likelihood. O-Poisson = over-dispersed Poisson model. O-Binomial 

= over-dispersed binomial model. LoC = Limit of Concern. 

5.3 Statistical analysis integrating multiple endpoints 

1. Integration over multiple endpoints may be automatically performed in a statistical 

hierarchical analysis (SHA) model as described in section 5.2. Perform a statistical meta-

analysis (SMA) if described in the logical tree for analysis. For this, consider the estimated 
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effects with their standard errors (at an appropriate scale, e.g. the log scale) as input for the 

meta-analysis. Consider the level over which an average is taken as a random factor.  

2. From the output, construct an estimate and a 90% confidence interval for the overall 

effect. 

3. The use of SHA or SMA is only logical if limits of concern are defined for the integrated 

output or if they are equal for all individual endpoints. 

5.4 Graphical representation of effects 

1. For each endpoint, plot point estimates and 90% confidence intervals of estimated effects, 

together with lines for the equality ratio 1, and the LoCs. In most cases plots on a logarithmic 

scale are advised. The 90% limits of the interval represent a 5% significance level for 

equivalence testing in a two one-sided tests (TOST) approach. 

2. Prepare one or more graphs, depending on the number of endpoints, and possible groupings 

in the hierarchy which are of interest as specified in the logical tree for analysis.  

3. Compare the intervals to the LoCs to obtain conclusions regarding equivalence of the GMO 

and the CMP. 

4. If of interest, compare the intervals to zero to obtain conclusions regarding the statistical 

significance of the difference between the GMO and the comparator. Note that this implicitly 

employs a significance level of 10% for a two-sided difference test. 

5. Optionally, confidence intervals can be displayed on the LoC Scaled Difference 

(LoCsDIF) scale. This possibly allows an easier comparison in case (scaled) limits of concern 

are not the same for various endpoints.  

5.5 Integration of endpoints, overall equivalence analysis 

1. For each estimated effect and its corresponding limit(s) of Concern (LoC) calculate the 

concern quotient (CQ): 

 

Two-sided: 𝐶𝑄 = max [
log(𝑄)

log(𝐿𝑜𝐶𝑙𝑜𝑤)
 ,

log(𝑄)

log(𝐿𝑜𝐶𝑢𝑝𝑝)
]

One-sided left: 𝐶𝑄 = max [
log(𝑄)

log(𝐿𝑜𝐶𝑙𝑜𝑤)
 , 0            ]

One-sided right: 𝐶𝑄 = max [         0             ,
log(𝑄)

log(𝐿𝑜𝐶𝑢𝑝𝑝)
]

 

Use the same formulae to convert the confidence limits for log(Q) to the CQ scale, using the 

lower confidence limit Q𝑙𝑜𝑤 in combination with LoC𝑙𝑜𝑤, and the upper confidence limit Q𝑢𝑝𝑝 

in combination with LoC𝑢𝑝𝑝. 

2. For each equivalence analysis (EA) step in the logical tree for the analysis, check whether 

the intended equivalence criterion is that 1) all member endpoints should comply to CQ ≤ 1 

(EAall) or 2) CQs can be averaged (EAav). 

3. For each EAall step, integrate over individual endpoints i by 𝐶𝑄 = max𝑖(𝐶𝑄𝑖) and 𝐶𝑄𝑢𝑝𝑝 =

max𝑖(𝐶𝑄𝑢𝑝𝑝,𝑖).  

4. For each EAav step, integrate over individual endpoints i by 𝐶𝑄 = mean(𝐶𝑄𝑖) and 𝐶𝑄𝑢𝑝𝑝 =

mean(𝐶𝑄𝑢𝑝𝑝,𝑖) . 
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6 Statistical analysis examples 

6.1 Power analysis arthropods based on historical data 

6.1.1 Power analysis case study 

For this case study, we consider a hypothetical new ERA field trial designed to test a new 

variety against a comparator. We consider the test variety to be a Bt crop, for which it is 

feasible to apply a no-spraying treatment regime, which is not feasible for the comparator 

variety. The field trial is setup to compare the Bt and comparator varieties, but it also includes 

two agricultural treatment regimens (default spraying and no spraying). It is anticipated that 

no spraying leads to undesirable effects for the comparator variety. For this new field trial we 

will focus on two particular scenarios for power analysis: 

Scenario 1: power analysis for a new experiment on a new location/year: In this scenario 

a hypothetical new experiment for a single future location/year combination is to be 

designed. For this new location/year, we consider a completely randomized design and 

the aim is to determine the number of replicates necessary to detect “critical” changes in 

abundance of the NTOs of interest. 

Scenario 2: power analysis for choosing the number of environments for a multi-

environment setting: In this scenario, we assume that there is a fixed design for each 

location/year combination (or environment), which is a completely randomized design 

with a replication size of four. Given this fixed design, the aim is to determine the 

number of environments that are required to detect “critical” changes in abundance of 

the NTOs of interest. 

The background data used for this case study are the abundance data of the NTOs for the 

comparator variety of Prasifka et al. (2008). This is a study on field corn over five locations 

and three years per location, with different numbers of replications per trial. Counts were 

recorded for over 100 taxa using pitfall traps, sticky cards, and visual counting as sampling 

methods. The taxa were mainly single species, but also some species groupings and 

miscellaneous categories are present. All sampling methods were done for multiple points in 

time for each plot, and also multiple samples were taken per plot. Both the number of points 

in time as well as the number of samples per plot varied per location and year. The case study 

is restricted to the abundance data of the pitfall traps and focuses on 15 selected NTOs, with 

average counts larger than 10, and use these data to obtain a priori data models for the 

endpoints within the power analysis. Table 3 summarizes the design configurations for the 

different sites and years of field trial data used by Prasifka et al. (2008). 
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Table 3. Experimental setup of each location/year combination used in the field trials presented by 

Prasifka et al. 2008. 

Location Year Replicates 
Pitfall traps 

Periods Traps Days 

Maryland 2000 3 8 10 7 

Maryland 2001 3 11 8 7 

Maryland 2002 3 6 8 7 

Nebraska 2001 2 10 4 1 

Nebraska 2002 2 10 4 1 

Nebraska 2003 2 4 10 1 

Iowa-1 2001 3 10 10 7 

Iowa-1 2002 3 10 10 7 

Iowa-1 2003 4 10 11 1 

Iowa-2 2001 2 10 4 1 

Iowa-2 2002 2 10 4 1 

Iowa-2 2003 2 4 10 1 

Illinois 2000 4 4 4 3 

Illinois 2001 4 4 4 3 

Illinois 2002 4 4 4 3 

6.1.2 Methods 

6.1.2.1 Define the endpoints and limits of concern 

As a pre-processing step, the counts (recorded over multiple time periods and multiple pitfall 

traps per plot) are aggregated by taking total counts. Hence, the total abundance pitfall trap 

counts of the 15 selected NTOs form the endpoints for the scenarios of the case study. 

For the purpose of the present study, limits of concern are considered equal for all endpoints, 

and are pragmatically set to levels of -50% decrease and +100% increase in abundance which 

corresponds with the two-fold differences considered by Perry et al. (2003). This implies 

LoCs of 0.5 and 2 for the ratio between the mean of the test variety (µT) and the mean of the 

comparator variety (µC), employing the notation used by the Power Analysis tool. 

6.1.2.2 Define the endpoint data models 

The overdispersed Poisson distribution is chosen as the distribution type for all endpoints in 

this case study. A priori estimates of the endpoint means and CVs, along with CVs that 

describe the between location/year variation, are derived from the data using the following 

GLMM per endpoint: 
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Response variable: Total count 𝑦𝑖 of endpoint i 

Probability distribution: Poisson-LogNormal with 

 𝑦𝑖  ~ Poisson(𝜆𝑖)   and  𝜆𝑖 ~ LogNormal(𝜇𝑖, 𝜎𝑖
2) 

Link function: Log 

Random component: Site x Year 

In addition an offset is used to account for differences in effort per plot. From such models, 

the estimated mean of endpoint i is then derived as: 

Mean𝑖 = exp(𝜇𝑖 + 𝜎𝑖
2 2⁄ ), 

and, using 𝕍ar(𝑦𝑖) = 𝜏
2𝜆𝑖 , the within location/year CV is derived as: 

𝐶𝑉within,𝑖 = √𝜏2 𝜆𝑖⁄  . 

The variation between location/year can be obtained by means of: 

𝐶𝑉between,𝑖 = √exp(𝜎2) − 1 . 

Applying this model for each endpoint, using the sampling periods and samples per plot as 

specified in Table 3, yields a successful fit for the selected 15 endpoints. Table 4 presents the 

selected endpoints along with the extracted mean, CV and between site/year CV. 

Table 4. The extracted means and CVs for the selected endpoints for the hypothetical new field trials. 

Endpoint Mean CV (%) CV between site/year (%) 

Click beetles 10.5 83.2 197.3 

Millipedes 15.0 112.4 146.9 

Aphids 15.9 61.3 114.5 

Springtails globular 16.2 96.9 133.8 

Antlike flower 16.3 63.7 306.1 

Ground beetle larvae 17.4 122.5 362.9 

Sowbugs 28.1 144.3 133.7 

Predaceous mites 30.1 48.9 241.5 

Oribatid mites 44.6 128.5 90.6 

Japanese beetles 47.5 87.8 112.4 

Springtails hypogastrurids 96.0 94.7 514.0 

Ants 131.0 108.2 66.8 

Springtails isotomids 132.8 44.8 472.8 

General collembola 706.7 51.3 121.1 

Springtails entomobryids 710.4 51.2 152.9 

6.1.2.3 Specify the experimental setup 

In the case study there is one additional treatment (spraying) with two levels (spraying and no 

spraying). Given that the test variety is a Bt crop, it is reasonable to assume that the test 

variety does not respond to spraying. However, it is assumed that the comparator will respond 

to spraying. The contrast of interest is therefore between the mean of the Bt crop with and 
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without spraying, and the comparator with spraying. Table 5 summarizes the experimental 

structure of the two scenarios. 

The case study assumes that the design within each site/year is completely randomized. 

However, for scenario 2, each site/year should be seen as a block with respect to the overall 

(power) analysis. Hence, in the context of the power analysis, scenario 2 is a randomized 

complete block design, for which the between location/year variation derived in the previous 

section can be used per endpoint. 

Table 5. Summary of the experimental structure of the scenarios of the case study. The basic field trial 

consists of four treatment levels: test with default spraying, test without spraying, comparator 

with defaults. 

   Replicates per location/year Location/year replications 

Variety Spraying Comparison Scenario 1 Scenario 2 Scenario 1 Scenario 2 

Test Default Test-variety To be assessed 4 1 To be assessed 

Test None Test-variety To be assessed 4 1 To be assessed 

Comparator Default Comparator To be assessed 4 1 To be assessed 

Comparator None Exclude To be assessed 4 1 To be assessed 

6.1.2.4 Specify the method of analysis and power analysis 

Following the recommendations of Goedhart et al. (2014), the log-normal model is used for 

difference tests and the overdispersed Poisson model is used for equivalence testing. The 

significance level is set to the standard level of 0.05 and the desired power is 0.8. The 

replication sizes of interest are different for the two scenarios and are chosen such that the 

required total number of plots to conduct the experiments are aligned, being 32, 64, 96, 128, 

160 and 192 plots. For scenario 1, in which one replicate consists of four plots, this yields 

replication sizes 8, 16, 24, 32, 40 and 48. For scenario 2, in which on replicate consists of 16 

plots, this yields the replication sizes 2, 4, 6, 8, 10 and 12. The power is approximated by 

means of Monte Carlo simulation using 100 simulations per effect/replication level. Table 6 

summarizes the analysis and power analysis settings used for the two scenarios of the case 

study. 
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Table 6. Power analysis settings used for the two scenarios of the case study. 

Power analysis settings Scenario 1 Scenario 2 

Significance level 0.05 0.05 

Tested replications 8, 16, 24, 32, 40, 48 2, 4, 6, 8, 10, 12 

Analysis method difference tests Log-Normal Log-Normal 

Analysis method equivalence tests Overdispersed Poisson Overdispersed Poisson 

Power calculation method Monte-Carlo Simulation (100 

per effect/replication) 

Monte-Carlo simulation (100 

per effect/replication) 

6.1.3 Results 

6.1.3.1 Power analysis single environment 

Figure 7 shows a graphical summary of the combined power analysis results for all endpoints. 

Table 7 shows the power of the difference tests at the limits of concern for various numbers of 

replications and Table 8 shows the power for the equivalence tests for the no difference case. 

It appears that 32 replications are needed to obtain powers larger than 0.8 for the difference 

test for all endpoints in scenario 1, while more than 48 replicates are required for the 

equivalence test.  

Figure 8 shows the power (represented by a colour) for all endpoints visualized in terms of 

mean and CV for the difference tests at the lower LoC for 16 replicates. The main cause for a 

low power for an endpoint is a low mean and/or a high CV. 
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Figure 7. Powers for scenario 1: Summary of the combined power analysis for all endpoints for 

various levels of the concern quotient aggregated by taking the minimum power over all 

endpoints. Top row: the results for the difference tests. Bottom row: the results for the 

equivalence test. Left column: the power versus the number of replicates. Right column: the 

power versus the concern quotient. 

Table 7. Results scenario 1: Power of the difference tests at the limits of concern (i.e., CQ=1) for 

various numbers of replications. Powers larger than 0.8 are given in green. 

Endpoint 
Overall 

mean 

CV CMP 

(%) 
8 16 24 32 40 48 

Click beetles 10.5 83.2 0.36 0.75 0.90 0.98 0.98 1 

Millipedes 15.0 112.4 0.33 0.53 0.83 0.88 0.89 0.97 

Aphids 15.9 61.3 0.58 0.88 1 1 1 1 

Springtails globular 16.2 96.9 0.35 0.71 0.86 0.9 0.92 0.98 

Antlike flower 16.3 63.7 0.69 0.93 1 1 1 1 

Ground beetle larvae 17.4 122.5 0.34 0.63 0.76 0.84 0.95 0.97 

Sowbugs 28.1 144.3 0.36 0.49 0.75 0.90 0.89 0.92 

Predaceous mites 30.1 48.9 0.73 1 1 1 1 1 

Oribatid mites 44.6 128.5 0.31 0.56 0.74 0.89 0.94 0.96 

Japanese beetles 47.5 87.8 0.43 0.80 0.96 0.97 0.99 1 

Springtails hypogastrurids 96.0 94.7 0.40 0.83 0.96 0.98 0.99 0.99 

Ants 131.0 108.2 0.35 0.76 0.87 0.94 0.99 1 

Springtails isotomids 132.8 44.8 0.81 1 1 1 1 1 

General collembola 706.7 51.3 0.76 1 1 1 1 1 

Springtails entomobryids 710.4 51.2 0.67 1 1 1 1 1 
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Table 8. Results scenario 1: Power of the equivalence tests at the level of no difference (i.e., CQ=0) 

for various numbers of replications. Powers larger than 0.8 are given in green. 

Endpoint 
Overall 

mean 

CV CMP 

(%) 
8 16 24 32 40 48 

Click beetles 10.5 83.2 0.28 0.73 0.90 0.97 0.99 0.99 

Millipedes 15.0 112.4 0.01 0.22 0.54 0.78 0.83 0.96 

Aphids 15.9 61.3 0.68 0.97 1 1 1 1 

Springtails globular 16.2 96.9 0.04 0.48 0.84 0.83 0.94 0.99 

Antlike flower 16.3 63.7 0.55 0.92 0.99 1 1 1 

Ground beetle larvae 17.4 122.5 0.01 0.14 0.37 0.68 0.79 0.87 

Sowbugs 28.1 144.3 0.01 0.08 0.25 0.41 0.53 0.75 

Predaceous mites 30.1 48.9 0.91 1 1 1 1 1 

Oribatid mites 44.6 128.5 0.00 0.16 0.34 0.62 0.72 0.86 

Japanese beetles 47.5 87.8 0.16 0.57 0.87 0.95 0.99 1 

Springtails hypogastrurids 96.0 94.7 0.06 0.51 0.82 0.96 0.94 1 

Ants 131.0 108.2 0.03 0.31 0.56 0.83 0.88 0.94 

Springtails isotomids 132.8 44.8 0.90 1 1 1 1 1 

General collembola 706.7 51.3 0.84 0.98 1 1 1 1 

Springtails entomobryids 710.4 51.2 0.87 1 1 1 1 1 

 

 
Figure 8. Results scenario 1: The power (represented by a colour) for all endpoints visualized in terms 

of mean and CV for the difference tests at the lower LoC for 16 replicates illustrating the main 

cause of a low power, being a low mean and/or a high CV. 

6.1.3.2 Power analysis multiple environments 

For scenario 2, the same output is obtained as for scenario 1. Figure 9 shows a graphical 

summary of the combined power analysis results for all endpoints. Table 9 shows the power 

of the difference tests at the limits of concern (i.e., CQ=1) for various numbers of replications 

and Table 10 shows the power for the equivalence tests at the level of no difference (i.e., 

CQ=0). These results are similar to the results of scenario 1: 10 environments, with a total of 
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40 replicates, is sufficient for an overall power of 0.8 for the difference and for the 

equivalence test. 

  

  
Figure 9. Results scenario 2: Summary of the combined power analysis for all endpoints for various 

levels of the concern quotient aggregated by taking the minimum power over all endpoints. Top 

row: the results for the difference tests. Bottom row: the results for the equivalence test. Left 

column: the power versus the number of replicates. Right column: the power versus the concern 

quotient. 
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Table 9. Results scenario 2: Power of the difference tests at the limits of concern (i.e., CQ=1) for 

various numbers of replications. Powers larger than 0.8 are given in green. 

Endpoint 
Overall 

mean 

CV CMP 

(%) 
2 4 6 8 10 12 

Click beetles 10.5 83.2 0.49 0.80 0.87 0.98 0.96 0.99 

Millipedes 15.0 112.4 0.44 0.47 0.79 0.92 0.94 0.96 

Aphids 15.9 61.3 0.62 0.86 0.97 0.99 1 1 

Springtails globular 16.2 96.9 0.32 0.63 0.83 0.90 1 0.99 

Antlike flower 16.3 63.7 0.53 0.84 0.95 0.98 1 1 

Ground beetle larvae 17.4 122.5 0.31 0.56 0.76 0.83 0.89 0.98 

Sowbugs 28.1 144.3 0.24 0.55 0.75 0.78 0.84 0.95 

Predaceous mites 30.1 48.9 0.69 0.96 1 1 1 1 

Oribatid mites 44.6 128.5 0.38 0.64 0.71 0.84 0.92 0.95 

Japanese beetles 47.5 87.8 0.45 0.70 0.87 0.93 0.99 0.99 

Springtails hypogastrurids 96.0 94.7 0.46 0.62 0.85 0.92 0.97 0.97 

Ants 131.0 108.2 0.38 0.63 0.82 0.90 0.97 1 

Springtails isotomids 132.8 44.8 0.71 0.93 1 1 1 1 

General collembola 706.7 51.3 0.69 0.98 0.99 1 1 1 

Springtails entomobryids 710.4 51.2 0.68 0.95 1 1 1 1 

 

Table 10. Results scenario 2: Power of the equivalence tests at the level of no difference (i.e., CQ=0) 

for various numbers of replications. Powers larger than 0.8 are given in green. 

Endpoint 
Overall 

mean 

CV CMP 

(%) 
2 4 6 8 10 12 

Click beetles 10.5 83.2 0.31 0.88 0.97 1 1 1 

Millipedes 15.0 112.4 0.10 0.53 0.81 0.96 1 1 

Aphids 15.9 61.3 0.69 0.99 1 1 1 1 

Springtails globular 16.2 96.9 0.14 0.74 0.91 0.98 0.99 1 

Antlike flower 16.3 63.7 0.71 1 1 1 1 1 

Ground beetle larvae 17.4 122.5 0.14 0.68 0.88 0.99 1 1 

Sowbugs 28.1 144.3 0.02 0.24 0.50 0.73 0.82 0.98 

Predaceous mites 30.1 48.9 0.96 1 1 1 1 1 

Oribatid mites 44.6 128.5 0.01 0.28 0.56 0.77 0.86 0.95 

Japanese beetles 47.5 87.8 0.29 0.82 0.97 0.99 1 1 

Springtails hypogastrurids 96.0 94.7 0.31 0.96 1 1 1 1 

Ants 131.0 108.2 0.04 0.51 0.76 0.91 0.96 0.98 

Springtails isotomids 132.8 44.8 1 1 1 1 1 1 

General collembola 706.7 51.3 0.87 1 1 1 1 1 

Springtails entomobryids 710.4 51.2 0.85 1 1 1 1 1 

 

6.1.3.3 Discussion 

We can align the results of scenario 1 and scenario 2 by expressing the replication levels in 

terms of the total number of plots. Figure 10 shows the number of endpoints with power 
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larger than 0.8 as a function of the number of plots for difference and equivalence tests, and 

for both scenarios.  

A noteworthy detail of Figure 10 is the order of the three lines of the difference test for the 

lower LoC, the equivalence test, and the difference test for the upper LoC. Here, it can be 

seen that the difference test on the lower LoC yields lower numbers of endpoints with power 

larger than 0.8 (here called ‘analysable endpoints’) than the difference test for the upper LoC. 

Apparently, the power to detect a two-fold reduction in abundance is lower than the power to 

detect a two-fold increase in this scenario. An explanation for this might be that a two-fold 

decrease implies lower abundances which are apparently less informative that larger 

abundances.  

Table 11 shows the number of analysable endpoints expressed in terms of the total number of 

plots for both scenarios. From this table, it can be observed that scenario 2 yields more 

analysable endpoints for the equivalence test for the same number of plots. An explanation for 

this might be that different site/year combinations will result in experiments with relatively 

high counts, due to between site/year variation, which are apparently more informative. 

  
Figure 10. Number of analysable endpoints (i.e. with a power > 0.8) for each number of replicates for 

the difference tests at the lower and upper LoC and the equivalence test at the point of no-

difference. Left: results of scenario 1. Right: results of scenario 2. 

Table 11. Number of analysable endpoints (i.e. with a power > 0.8) for scenario 1 for different 

numbers of replicates calculated for the difference tests at the lower and upper LoC and the 

equivalence test at the point of no-difference. 

 Scenario 1 Scenario 2 

Nplots 
Difference 

test LoClow 

Equivalence 

test 

Difference 

test LoCupp 

Difference 

test LoClow 

Equivalence 

test 

Difference 

test LoCupp 

32 1 4 6 0 4 5 

64 7 6 12 6 9 7 

96 12 10 15 11 12 15 

128 15 11 15 14 13 15 

160 15 12 15 15 15 15 

192 15 14 15 15 15 15 
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6.2 NTOs in maize in Spain, Slovakia, Denmark, Sweden 

6.2.1 Examples of trees of endpoints 

Figure 11 shows an example of a hierarchical tree for the analysis of maize NTO data in 

AMIGA. The attention here is restricted to the arthropod count data of Spain and Slovakia, 

and the profiling data of the soil micro-organisms in the four countries Spain, Slovakia, 

Denmark and Sweden. A first decision was to sum the arthropod counts over the time-points 

within a season, because not enough power was expected for low abundance taxa at single 

time points. It was also decided not to focus on single years, but to further sum the counts 

over the available years when the experimental design was continued on the same plots. The 

data were then analysed per taxon and per site (see 6.2.2.1 and 6.2.2.2). The soil data were 

analysed per functional group per site and per year (6.2.2.3). The effects were then 

summarised by various forms of equivalence analysis (6.2.2.4). The arthropod data were first 

summarised for functional groups per site, then for functional groups and finally to the whole 

arthropod group. The soil data were summarised per functional group per site per year, and 

then per functional group, and finally for the whole rhizosphere micro-organism category. 

The last step is then to assess the equivalence across the two NTO categories.  

 

Figure 11. Example 1 of a logical tree for analysis of the data in a NTO study of a GM maize. 

SUM = summation of data. SA = statistical analysis. SHA = statistical hierarchical analysis. 

SMA = statistical meta-analysis. EAav = equivalence analysis with averaging of concern 

quotients. EAall = equivalence analysis requiring all concern quotients to be within limits. 
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Many other analysis schemes are possible. For example Figure 12 shows an alternative 

scheme where the arthropod data are first summarised over functional categories per site. This 

would be relevant for example if national decisions have to be made. 

 

Figure 12. Example 2 of a logical tree for analysis of the data in a NTO study of a GM maize, as an 

alternative to the subtree for Arthropods in Figure 11). SUM = summation of data. 

SA = statistical analysis. SHA = statistical hierarchical analysis. SMA = statistical meta-

analysis. EAav = equivalence analysis with averaging of concern quotients. EAall = equivalence 

analysis requiring all concern quotients to be within limits. 

6.2.2 Example analyses NTO field study maize 

6.2.2.1 Arthropods maize Spain 

The purpose was to compare two varieties of maize, BT and ISO. A field trial was performed 

in Seseña, Spain, in 2012, 2013 and 2014 using the same experimental design in the three 

years. The experimental design was a randomized block design with rows as blocks and two 

replicates of ISO and BT were randomized within each row (Figure 13). In each of the 20 

plots two pitfall traps were placed. Count data for arthropods were obtained in 9 sampling 

periods per year. The taxa were grouped into 5 functional groups (herbivores, predators, 

parasitoids, detritivores, other). Statistical analyses were performed using GenStat 18
th

 edition 

(VSN 2012). 

Following the logical tree for analysis in Figure 11 counts were summed over the two traps 

per plot and over the nine sampling periods per year. For the multi-year analysis counts were 

also summed over the three years. 
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 Col 1 Col 2 Col 3 Col 4 

Row 1 BT BT ISO ISO 

Row 2 BT ISO ISO BT 

Row 3 BT ISO BT ISO 

Row 4 BT ISO ISO BT 

Row 5 ISO BT BT ISO 

Figure 13. Scheme showing the experimental design of the maize field study in Spain. 

The mean overall count (m) and the means for the two maize varieties were calculated. For 

taxa where both variety means were positive an over-dispersed Poisson (OP) log-linear model 

was fitted with on the logarithmic scale additive effects for block and variety. This model 

assumes that the variance of a count is proportional to the mean and that differences are 

additive on the log-scale. The dispersion factor was estimated with the Pearson statistic X. It 

was set to 1 if the estimate was lower than 1. From this the coefficient of variation (CV), 

expressed as a percentage, was estimated as 𝐶𝑉 = 100√𝑋 𝑚⁄  in which m is the mean of the 

counts. The log-linear model directly estimates the log-ratio (or log of fold change) of the 

mean of the BT and ISO variety and its associated standard error. These were used to 

construct a two-sided 90% confidence interval for the log-ratio by calculating {log-ratio ± 

tvalue × se}, in which tvalue is according to the Student distribution with appropriate degrees 

of freedom. Note that a 90% interval is used, rather than a 95% interval, to enable equivalence 

testing at a 5% significance level by means of the two one-sided tests (TOST) approach. 

Estimates of fold change and confidence intervals are graphically depicted on the log-scale in 

Figure 14, together with the equivalence region between the limits of concern. A further 

scaling to LoC scaled differences (LoCSDIFF) leads to the representation in Figure 15. 

For taxa with a zero average for the GMO or CMP it is not possible to estimate the log-ratio 

using the OP model. For these taxa, we calculated a ratio where the zero count was replaced 

with the lowest possible mean value based on a count 1, e.g. 0.1 in the current case with 10 

replications per year. If these estimates fell outside the limits of concern they were included in 

the graphical display to focus attention on these possibly relevant changes. However, this 

situation did not occur with the current dataset. 

In the example of Figure 14 and Figure 15 the point estimates for all taxa are within the 

equivalence region. Possibly decreased levels of Eurobella and Chironomidae, and possibly 

increased levels of Collembola, Corulophidae, Chrysopidae and Formicidae cannot be 

excluded. Note that there are also several significant differences (Aphididae, Phytoseiidae, 

Opiliones, Corylophidae, Chironomidae), but the points estimates for all of them as well as 

the confidence intervals for the first three mentioned taxa are all fully within the equivalence 

region.  

Finally, it should be stressed again that the LoC values used in this case study are tentative. In 

practice LoC values can always be discussed, and based on the context given other values, 

which would then lead to adapted graphs. 
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Figure 14. Arthropods in field trials Spain, summed over 2012-2014. Fold changes GMO vs. CMP for 

all taxa with positive means for both varieties. LoCs are factors 0.5 and 2 for taxa with means of 

10 and higher, and log(LoC) is scaled by √𝟏𝟎 𝐦⁄  for lower means. Results sorted according to 

LoC within functional groups. Means over the ten plots for test and comparator group and CV 

are indicated in brackets. 
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Figure 15. Arthropods in field trials Spain, summed over 2012-2014. LoC scaled differences GMO vs. 

CMP for all taxa with positive means for both varieties. LoCs are factors 0.5 and 2 for taxa with 

means of 10 and higher, and log(LoC) is scaled by √𝟏𝟎 𝐦⁄  for lower means. Results sorted 

according to LoC within functional groups. Means over the ten plots for test and comparator 

group and CV are indicated in brackets. 
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6.2.2.2 Arthropods maize Slovakia 

The purpose was to compare two varieties of maize, BT and ISO. A field trial was performed 

in Borovce, Slovakia, in 2012, 2013, 2014 and 2015 using the same experimental design in 

the three years. The experimental design was a block design with two plots with ISO and BT 

per block in a systematic order, see Figure 16 

 Col 1 Col 2 Col 3 Col 4 

Row 1 ISO BT ISO BT 

Row 2 BT ISO BT ISO 

Row 3 ISO BT ISO BT 

Row 4 BT ISO BT ISO 

Row 5 ISO BT ISO BT 

Figure 16. Scheme showing the experimental design of the field study in Slovakia. 

In each of the 20 plots pitfall traps were placed. Count data for arthropods were obtained 

using pitfall traps in around 9 sampling periods per year. Using the same methods as for 

Spain, but for a different list and grouping of arthropod taxa, we arrive at the results in Figure 

17. All point estimates of the fold change lie in the equivalence region. The only uncertainty 

is about the Collembola species Xenylla welchi, which might be decreased. The Elateridae 

were significantly increased, but within the limits of concern. 

 

Figure 17. Arthropods in field trials Slovakia, summed over 2012-2015. Fold changes GMO vs. CMP 

for all taxa with positive means for both varieties. LoCs are factors 0.5 and 2 for taxa with 

means of 10 and higher, and log(LoC) is scaled by √𝟏𝟎 𝒎⁄  for lower means. Results sorted 

according to LoC within groups. Means over the ten plots for test and comparator group and CV 

are indicated in brackets. 

6.2.2.3 Soil micro-organisms Spain, Slovakia, Denmark, Sweden 

Total soil DNA was extracted from the rhizospheres and this DNA served as the raw material 

to assess the diversity of bacteria, archaea and fungi. Similarly, as an indicator for functional 
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diversity, the nirS/nirK genes, which encode for bacterial denitrification, were sequenced. The 

five response variables (Bacteria, Archaea, Fungi, nirK and nirS) were log transformed to 

stabilize the variance. Each response variable was subjected to analysis of variance, separately 

for each experiment, and 90% confidence intervals for the log-difference between the BT and 

ISO variety were derived from this statistical analysis. LoCs were again tentatively set to 0.5 

and 2. The intervals are given in Figure 18. All intervals, with the exception of Fungi in 

Slovakia 2013, lie well within the LoCs. 

 

Figure 18. 90% confidence intervals for the ratio between the mean of the GMO and the CMP for soil 

micro-organisms in Denmark, Slovakia, Spain and Sweden in separate trials. LoCs are 

tentatively set to 0.5 and 2.  

6.2.2.4 Integrated analysis 

For the integration we follow the steps of Figure 11, but note that this is just an example of a 

possible tree for analysis.  

6.2.2.4.1 Integration for Spanish arthropod data 

The first integration step is an averaging equivalence analysis on the taxa within functional 

groups (step EAav). Table 12 shows the calculation of concern quotients (CQ) for all taxa, 

where some of CQupp values still exceed 1, indicating a possible need for closer inspection. 
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Table 13 shows the average CQs for the functional groups, showing that no CQ values 

exceed 1, i.e. all values are within the equivalence range. 

Table 12. Calculation of concern quotients CQ for the Spanish arthropod data. Limits of concern and 

estimates are expressed on the natural log scale. CQ values larger than one are given in light 

red. 

Group Taxon LoClow LoCupp  left  esti  right CQ CQupp 

HERBIVORES Acheta -0.69 0.69 -0.17 -0.07 0.03 0.10 0.24 

HERBIVORES Cicadellidae -0.69 0.69 -0.18 0.02 0.23 0.04 0.34 

HERBIVORES Delphacidae -0.69 0.69 -0.12 0.07 0.27 0.11 0.38 

HERBIVORES Aphididae -0.73 0.73 0.15 0.44 0.73 0.60 1.00 

HERBIVORES Thysanoptera -0.75 0.75 -0.13 0.24 0.62 0.33 0.83 

HERBIVORES Tetranychidae -1.02 1.02 -0.83 -0.26 0.30 0.26 0.81 

HERBIVORES LepidopteraLarvae -1.20 1.20 -0.40 0.03 0.46 0.02 0.38 

HERBIVORES Diplopoda -1.43 1.43 -0.39 0.13 0.64 0.09 0.45 

HERBIVORES Gryllus -1.82 1.82 -0.73 -0.07 0.59 0.04 0.40 

HERBIVORES Chrysomelidae -2.09 2.09 -0.94 -0.18 0.57 0.09 0.45 

HERBIVORES Elateridae -2.96 2.96 -0.61 0.56 1.73 0.19 0.58 

HERBIVORES Coccidae -5.66 5.66 -2.85 -0.69 1.46 0.12 0.50 

HERBIVORES Pamphagidae -5.66 5.66 -1.46 0.69 2.85 0.12 0.50 

PREDATORS Lycosidae -0.69 0.69 -0.47 -0.18 0.11 0.26 0.68 

PREDATORS PseudophonusRufipes -0.69 0.69 -0.09 0.07 0.23 0.10 0.33 

PREDATORS PseudophonusGriseus -0.69 0.69 -0.13 0.06 0.25 0.08 0.36 

PREDATORS Labidura -0.69 0.69 -0.25 -0.09 0.07 0.13 0.35 

PREDATORS Anystidae -0.69 0.69 -0.23 0.00 0.22 0.01 0.33 

PREDATORS Phytoseiidae -0.69 0.69 -0.34 -0.20 -0.06 0.29 0.49 

PREDATORS Linyphiidae -0.69 0.69 -0.03 0.20 0.42 0.28 0.60 

PREDATORS Staphylinidae -0.69 0.69 -0.02 0.18 0.38 0.26 0.55 

PREDATORS Lamyctes -0.69 0.69 -0.11 0.21 0.54 0.31 0.78 

PREDATORS CarabidaeNI -0.69 0.69 -0.27 -0.02 0.23 0.03 0.40 

PREDATORS Nala -0.69 0.69 -0.33 -0.03 0.27 0.04 0.47 

PREDATORS Opiliones -0.71 0.71 0.09 0.35 0.60 0.49 0.85 

PREDATORS Gnaphosidae -0.87 0.87 -0.20 0.11 0.42 0.13 0.49 

PREDATORS Orius -1.00 1.00 -0.43 -0.02 0.38 0.02 0.43 

PREDATORS PseudophonusNI -1.00 1.00 -0.51 0.00 0.51 0.00 0.51 

PREDATORS Nabidae -1.42 1.42 -0.51 0.00 0.51 0.00 0.36 

PREDATORS Trombidiidae -1.48 1.48 -0.62 -0.09 0.44 0.06 0.42 

PREDATORS Philodromidae -1.55 1.55 -0.18 0.41 0.99 0.26 0.64 

PREDATORS Coccinellidae -1.96 1.96 -0.62 0.08 0.79 0.04 0.40 

PREDATORS Geophilomorpha -2.19 2.19 -0.94 0.20 1.34 0.09 0.61 

PREDATORS Empididae -2.31 2.31 -0.97 0.00 0.97 0.00 0.42 

PREDATORS Eurobellia -2.62 2.62 -2.79 -1.30 0.20 0.50 1.07 

PREDATORS Aeolothripidae -2.72 2.72 -0.65 0.47 1.59 0.17 0.58 

PREDATORS Pompilidae -2.72 2.72 -0.27 0.81 1.89 0.30 0.70 

PREDATORS Zoridae -2.72 2.72 -1.13 -0.15 0.83 0.06 0.42 
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PREDATORS Chrysopidae -2.96 2.96 -0.29 1.50 3.30 0.51 1.12 

PREDATORS Miridae -2.96 2.96 -1.02 0.18 1.38 0.06 0.47 

PREDATORS AnthocoridaeNI -3.27 3.27 -0.55 0.69 1.94 0.21 0.59 

PREDATORS Lygaeidae -3.71 3.71 -1.63 -0.29 1.06 0.08 0.44 

PREDATORS Geocoris -4.00 4.00 -3.54 -1.61 0.32 0.40 0.88 

PREDATORS Dolichopodidae -4.90 4.90 -1.76 0.00 1.76 0.00 0.36 

PREDATORS Thomisidae -4.90 4.90 -0.94 1.10 3.13 0.22 0.64 

PREDATORS Zoropsidae -4.90 4.90 -0.94 1.10 3.13 0.22 0.64 

PREDATORS Geocoridae -5.66 5.66 -1.46 0.69 2.85 0.12 0.50 

PREDATORS Salticidae -5.66 5.66 -1.46 0.69 2.85 0.12 0.50 

PREDATORS Reduviidae -6.93 6.93 -2.49 0.00 2.49 0.00 0.36 

PARASITOIDS Mymaridae -0.69 0.69 -0.28 -0.02 0.23 0.03 0.40 

PARASITOIDS Baeus -0.80 0.80 -0.22 0.13 0.49 0.17 0.61 

PARASITOIDS Diapriidae -0.94 0.94 -0.47 -0.13 0.21 0.14 0.50 

PARASITOIDS ScelionidaeNI -1.61 1.61 -0.75 -0.16 0.42 0.10 0.46 

PARASITOIDS Megaspilidae -2.45 2.45 -1.01 0.00 1.01 0.00 0.41 

PARASITOIDS Dryinidae -2.83 2.83 -1.37 -0.34 0.69 0.12 0.48 

PARASITOIDS BraconidaeNI -3.10 3.10 -1.63 -0.41 0.81 0.13 0.52 

PARASITOIDS Ceraphronidae -3.10 3.10 -1.11 0.00 1.11 0.00 0.36 

PARASITOIDS Pteromalidae -3.71 3.71 -3.69 -1.79 0.11 0.48 1.00 

PARASITOIDS Ichneumonidae -4.00 4.00 -1.44 0.00 1.44 0.00 0.36 

PARASITOIDS Bethylidae -4.38 4.38 -0.58 1.39 3.36 0.32 0.77 

PARASITOIDS Aphelinidae -4.90 4.90 -0.94 1.10 3.13 0.22 0.64 

DETRITIVORES Collembola -0.69 0.69 -0.08 0.38 0.84 0.54 1.21 

DETRITIVORES Oribatida -0.69 0.69 -0.19 0.06 0.31 0.09 0.45 

DETRITIVORES Sciaridae -0.69 0.69 -0.18 0.09 0.36 0.13 0.52 

DETRITIVORES Anthicidae -0.70 0.70 0.00 0.31 0.61 0.44 0.88 

DETRITIVORES Corylophidae -1.12 1.12 0.24 0.71 1.18 0.63 1.05 

DETRITIVORES Chironomidae -1.50 1.50 -2.15 -1.33 -0.51 0.89 1.44 

DETRITIVORES Acari -1.68 1.68 -0.94 -0.24 0.47 0.14 0.56 

OTHER Formicidae -0.69 0.69 -0.05 0.44 0.93 0.63 1.34 

OTHER Phoridae -0.69 0.69 -0.13 0.10 0.34 0.15 0.48 

OTHER Larvae -1.13 1.13 -0.50 0.19 0.87 0.17 0.77 

OTHER Cecidomyiidae -1.14 1.14 -0.86 -0.33 0.21 0.29 0.76 

OTHER Psocoptera -1.50 1.50 -0.68 -0.14 0.40 0.09 0.45 

OTHER Latridiidae -2.38 2.38 -0.51 0.36 1.22 0.15 0.51 

OTHER Chloropidae -2.53 2.53 -0.92 0.13 1.19 0.05 0.47 

OTHER Calliphoridae -2.62 2.62 -0.95 0.29 1.52 0.11 0.58 

OTHER Milichiidae -2.62 2.62 -0.39 0.59 1.57 0.22 0.60 

OTHER Cryptophagidae -3.10 3.10 -0.37 0.85 2.06 0.27 0.66 

OTHER Pupae -3.71 3.71 -1.06 0.29 1.63 0.08 0.44 

OTHER Anthomyiidae -4.00 4.00 -0.83 0.69 2.22 0.17 0.55 

OTHER Muscidae -4.38 4.38 -3.36 -1.39 0.58 0.32 0.77 

OTHER Sphaeroceridae -4.90 4.90 -1.76 0.00 1.76 0.00 0.36 

OTHER DipteraOther -5.66 5.66 -1.46 0.69 2.85 0.12 0.50 
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OTHER Isopoda -5.66 5.66 -1.46 0.69 2.85 0.12 0.50 

OTHER Sarcophagidae -6.93 6.93 -2.49 0.00 2.49 0.00 0.36 

 

Table 13. EAav method applied to Spanish Arthropod data.  

Group CQ CQupp 

HERBIVORES 0.16 0.53 

PREDATORS 0.16 0.55 

PARASITOIDS 0.14 0.54 

DETRITIVORES 0.41 0.87 

OTHER 0.17 0.60 

6.2.2.4.2 Integration for Slovakian arthropod data 

In the Slovakian field trial the identification of arthropods has been done in another way and 

another grouping of arthropod taxa has been used. However, the same method can be applied 

to calculate CQ values, and average them over the taxa in a group. The results are given in 

Table 14, showing that no CQ values exceed 1, i.e. all values are within the equivalence 

range. 

Table 14. EAav method applied to Slovakian Arthropod data.  

Group CQ CQupp 

PREDATORS: Carabidae, Araneae 0.15 0.54 

DETRITIVORES: Collembola 0.27 0.72 

HERBIVORES: Elateridae 0.52 0.90 

6.2.2.4.3 Integration for arthropod functional groups 

The next step is an equivalence analysis over sites where all members should comply to their 

LoCs (EAall). Therefore, we take the maximum available CQ value for each functional group. 

Obviously, no concern is indicated, because this was already the case at the previous level. 

Table 15. EAall method applied to Arthropod data of Spanish and Slovakian sites.  

Group CQ  CQupp 

HERBIVORES 0.52 0.90 

PREDATORS 0.16 0.55 

PARASITOIDS 0.14 0.54 

DETRITIVORES 0.41 0.87 

OTHER 0.17 0.60 

6.2.2.4.4 Integration for arthropods 

Again taking the maximum over the functional groups we arrive at final values for the 

Arthropod group as a whole. Obviously, no concern is indicated, because this was already the 

case at the previous level. 
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6.2.2.4.5 Integration for soil micro-organism data 

A meta-analysis of the soil effects over sites and years for each endpoint results in the 90% 

confidence intervals given in Figure 19. This reveals that, still employing the same LoCs of 

0.5 and 2, all intervals lie well within the LoCs. This would imply that there is no concern 

across environments. Further integration over endpoints, employing an equivalence analysis 

(EA), does not present any problems, and leads to the conclusion of no concern for the 

category of soil micro-organisms. 

 

Figure 19. 90% confidence intervals for the ratio between the mean of the GMO and the CMP 

resulting from a meta-analysis for each response variable over sites and years for soil micro-

organisms in Denmark, Slovakia, Spain and Sweden. LoCs are tentatively set to 0.5 and 2.  

Table 16. EAall method applied to Soil biology data per group of sites in Denmark, Slovakia, Spain 

and Sweden, 2012-2014.  

Group CQ CQupp 

Bacteria 0.02 0.07 

Archaea 0.01 0.09 

Fungi 0.07 0.22 

nirK 0.08 0.18 

nirS 0.03 0.22 

 

6.2.2.4.6 Overall integration maize NTO data 

The final step is to integrate using EAall the conclusions over the NTO categories, in this 

example the arthropod data and the soil micro-organism data. Obviously the final conclusion 

is that of equivalence, because this was already the case for each of these categories. 

Table 17. NTO in maize. EAall method applied to Arthropod and Soil micro-organisms data  

Level of assessment CQ  CQupp 

Arthropods 0.52 0.90 

Soil micro-organisms 0.08 0.22 

NTO 0.52 0.90 

 

6.3 NTOs in potato Ireland and Netherlands 

Field trials with potato varieties were performed in Ireland and the Netherlands both in 2013 

and in 2014. The main purpose was to compare a GMO potato variety, called A15-13, with its 
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comparator, or CMP for short, which is Desiree. A third variety SarpoMira was also included 

in the trial and all three varieties were subjected to three agricultural treatments: Weekly 

spraying, No spraying and spraying according to IPM. Completely randomized block designs 

were employed and a fresh randomization was carried out for each of the four experiments. 

The number of replications six in Ireland and seven in the Netherlands. Pitfalls were placed in 

every plot and emptied three times during each trial. Arthropods were identified and counted 

in each pitfall. Taxa were grouped into the six functional groups Predators, Detritivores, 

Parasitoids, Fungivores, Herbivores, Hyperparasitoids and a seventh group Unknown with 

remaining taxa. 

6.3.1  Examples of trees to analyse NTOs in potato trials 

Figure 20 shows three examples of hierarchies for analysing the NTO data. Details of the 

steps depicted in Figure 20 and their implicit assumptions are detailed below. For hierarchy A 

in Figure 20 the steps are as follows 

A.1 SUM: the first step in hierarchy A is to sum the count data for each individual taxon 

over the three time points which results in a single count for every taxon for each 

plot per site per year. This was done because not enough power was expected at 

single time points especially for the less abundant species. Summing disregards 

interactions with time-point within experiments. 

A.2 SA: counts of single taxa within experiments are statistically analysed to give effects 

for each taxon per site per year. This enables us to inspect the effect for every single 

taxon per site per year. This is useful when national decision regarding individual 

taxa need to be made under different conditions as represented by years. 

A.3 SMA: effects for taxa within the same functional group are combined per site per 

year using a meta-analysis. This assumes that a negative effect for a taxon can be 

compensated by a positive effect for another taxon within the same functional group. 

Effects with large standard errors, e.g. due to low abundances, have a lower weight 

in the meta-analysis. This implies that the overall effect is dominated by effects with 

small standard errors and these are generally taxa with high abundances.  

A.4 EAall the combined effects for the functional groups are first evaluated for each 

combination of sites and years. This involves combining the Concern Quotient (CQ) 

derived from step A.3 over the functional groups. This would give a single result for 

each site for each year and national decision could be based on that. 

A.5 EAall these combined CQs are then assessed over years for each site.  

A.6 EAall and finally the CQ for sites are combined into a single judgement.  
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A 

 

B 

 

C 

 

Figure 20. Examples of logical trees for the analysis of NTO data for potato field trials in Ireland and 

the Netherlands in 2013 and 2014.. Sum = summation of data. SA = statistical analysis. SHA = 

statistical hierarchical analysis. SMA = statistical meta-analysis. EAav = equivalence analysis 

with averaging of concern quotients. EAall = equivalence analysis requiring all concern 

quotients to be within limits. 

For hierarchy B in Figure 20 the steps are as follows 

B.1 SHA: this is identical to step A.1 described above. 

B.2 SUM: the taxa are further summed to form counts for functional groups. This 

implicitly assumes that individuals of different species within the same functional 

group are equally valuable. It also presumes that there is no interest in individual 

taxa.  

B.3 SHA: a statistical hierarchical analysis is performed to estimate the effect for each 

functional group while averaging over years and sites. This implicitly assumes that 

there is only interest in a cross-environment estimate of effects, and that negative 

effects in one environment can be compensates by positive effects in another 

environment. It also assumes that national decisions are not of interest. 
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B.4 EAall the CQ obtained in the previous step is assessed over functional groups 

 

For hierarchy C in Figure 20 the steps are as follows 

C.1 SHA: a statistical hierarchical analysis is performed to estimate the effect for each 

taxon while averaging over time-points, years and sites. This implicitly assumes 

there is only interest in a cross-environment estimate of effects, and that negative 

effects in one environment can be compensates by positive effects in another 

environment. It also assumes that national decisions are not of interest. 

C.2 SMA: effects for taxa within the same functional group are combined. This assumes 

that a negative effect for a taxon can be compensated by a positive effect for another 

taxon within the same functional group. Effects with large standard errors, e.g. due to 

low abundances, have a lower weight in the meta-analysis. This implies that the 

overall effect is dominated by effects with small standard errors and these are 

generally taxa with high abundances. 

C.3 EAall: the CQ obtained in the previous step is assessed over functional group 

6.3.2 Example analysis for NTOs in potato trials 

The analysis according to hierarchy A provides the most detail and is presented below. In step 

A.1 the counts for each taxon are summed over the time-points. Two pitfalls in the Irish trial 

in 2013 were missing at the second time point. To enable summing over time points, these 

missing count were imputed using the log-linear model “Block + Treatment” for the time 

point in question. The same was done for a single missing pitfall at the second time point in 

the Dutch trial in 2014. For the Dutch 2013 trial 13 out of 63 traps were missing for the first 

and third time point. Therefor for this trial the first and third time point were discarded.  

6.3.2.1 Effects per taxon per site per year 

In step A.2 each taxon was statistically analysed separately for each experiment. The 

statistical model “Block + Treatment” results in an estimate of the log-ratio for the GMO-IPM 

versus CMP-Weekly comparison. However when there is no interaction between Variety and 

the Spraying treatment, the effective level of replication can be increased by a factor of three 

by investigating the difference between the GMO and CMP averaged over the three Spraying 

treatments. This can be accomplished by fitting the main effects model “Block + Spraying + 

Variety”. It is customary to use this main effects model in case the interaction is not 

significant. However the interaction between Variety and Spraying has four degrees of 

freedom and also involves the additional variety SarpoMira which is of no interest for the 

main comparison between the GMO and CMP. So it is possible that an interaction between 

Spraying and the GMO/CMP is swamped by complete absence of an interaction with 

SarpoMira or the other way around. This problem can be settled by excluding the additional 

variety from significance testing of the interaction. The remaining interaction is then between 

GMO/CMP on the one hand and Spraying on the other hand. Moreover, the Spraying 

treatment None can be fully responsible for the remaining interaction in which case we would 

like to compare the GMO and CMP averaged over the two Spraying treatments IPM and 

Weekly. These considerations were formalized in the following procedure: 
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1. Test for the interaction between GMO/CMP and Spraying (with three levels) which 

has two degrees of freedom. In case this interaction is not significant compare the 

GMO and CMP averaged over the three Spraying levels. Otherwise go to 2. 

2. Test for the interaction between GMO/CMP and the Spraying levels Weekly and IPM; 

this interaction has one degree of freedom. In case this interaction is not significant 

compare the GMO and CMP averaged over the two Spraying levels Weekly and IPM. 

Otherwise go to 3. 

3. Fit the full model “Block + Treatment” and compare GMO-IPM vs CMP-Weekly. 

When either the GMO-IPM or the CMP-Weekly treatment has a zero mean count, the 

estimated log-ratio, i.e. Δ = log(Q), equals plus or minus infinity and a confidence interval for 

the ratio cannot be constructed. For many of these cases both mean counts will be small. 

However a zero mean count for the GMO can be combined with a large mean for the CMP or 

vice versa. For these situations the zero mean count is replaced by the smallest positive mean 

possible and the ratio, without a confidence interval is calculated. The smallest positive mean 

possible equals 1 over the number of replications, e.g. 1/6 for 6 replications. The calculated 

ratio can be interpreted as a lower bound for the true ratio. In many cases this results in a 

small ratio which is of no interest. Therefore only calculated ratios outside the LoCs will be 

signalled in the graphical displays. Limits of concern were tentatively set to 0.5 and 2 for each 

taxon and the logarithm of LoC was multiplied by √10/𝑚 whenever the combined mean m of 

the GMO and CMP is below 10. The confidence interval for each effect with the associated 

LoCs are given in Figure 21 to Figure 24. Note that a confidence interval for each functional 

group is also given; this is for the sum over the taxa within each group. There are two 

abundant species with an estimated effect which is outside the tentative LoCs: Poduromorpha 

in IR-2013 and Mesostigmata in IR-2014. Most intervals fall completely within the LoCs.  
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Figure 21. Arthropods in potato trial in Ireland 2013. 90% confidence intervals for the ratio between 

GMO and CMP averaged over Spraying treatment if possible. The number of Spraying 

treatments over which is averaged, the means for the GMO and CMP and the CV are added in 

parenthesis. Limits of Concern equal 0.5 and 2 and log(LoC) is scaled by √𝟏𝟎 𝒎⁄  for combined 

means m lower than 10.  
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Figure 22. Arthropods in potato trial in Ireland 2014. 90% confidence intervals for the ratio between 

GMO and CMP averaged over Spraying treatment if possible. The number of Spraying 

treatments over which is averaged, the means for the GMO and CMP and the CV are added in 

parenthesis. Limits of Concern equal 0.5 and 2 and log(LoC) is scaled by √𝟏𝟎 𝒎⁄  for combined 

means m lower than 10.  
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Figure 23. Arthropods in potato trial in The Netherlands 2013. 90% confidence intervals for the ratio 

between GMO and CMP averaged over Spraying treatment if possible. The number of Spraying 

treatments over which is averaged, the means for the GMO and CMP and the CV are added in 

parenthesis. Limits of Concern equal 0.5 and 2 and log(LoC) is scaled by √𝟏𝟎 𝒎⁄  for combined 

means m lower than 10.  
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Figure 24. Arthropods in potato trial in The Netherlands 2014. 90% confidence intervals for the ratio 

between GMO and CMP averaged over Spraying treatment if possible. The number of Spraying 

treatments over which is averaged, the means for the GMO and CMP and the CV are added in 

parenthesis. Limits of Concern equal 0.5 and 2 and log(LoC) is scaled by √𝟏𝟎 𝒎⁄  for combined 

means m lower than 10.  
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6.3.2.2 Integrated analysis  

Step A.3 involves a meta-analysis for each functional group for each site/year combination. 

This is not useful when there are only a few taxa within a functional group. The meta-analysis 

was therefore only carried out for those functional groups with 4 or more species. In case the 

functional group has three or less species the estimated effect for the sum was taken. This was 

thus done for Hyperparasitoids and Fungivores in all four experiment and Herbivores in The 

Netherlands 2013. Limits of concern for estimated overall effect for the meta-analysis were 

again tentatively set to 0.5 and 2, and for the estimated effect for the sum as before. 

Confidence intervals are given in Figure 25. All intervals are within the LoCs except for the 

Fungivores interval for the trial in The Netherlands in 2013. Note that this involves very few 

individuals and also note that in the Netherlands 2014 the estimated effect for Fungivores has 

an opposite sign. 

 

Figure 25. 90% confidence interval resulting from a meta-analysis for functional groups for 

arthropods data in potato field trials. Meta-analysis is only performed for those functional 

groups with 4 or more taxa. For other groups the interval for the sum counts is given.  

An equivalence analysis (Eall) on the estimated effects would reveal no concern because all 

the estimated effects are within the LoCs. In a worst case scenario there would however be 

concern with respect to Fungivores in the Netherlands 2013 trial and no concern in Ireland 

and the Netherlands 2014.  
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