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Abstract

One of the aims of the EU project AMIGA (Assessing and monitoring the impacts of genetically
modified plants on agro-ecosystems) is to provide protocols on how to perform field studies, and on
how to analyse data obtained from such studies. Workpackage 9 of AMIGA works on statistical
methods relevant for evaluation of non-target effects, and the current deliverable proposes elements
for protocols of experimental design and statistical analysis.

For the most common data type in ecological field studies, i.e. count data, a large simulation study was
conducted, including multiple ways of simulating count data, and multiple ways of statistical analysis.
Four different count distributions were used to simulate count data for a mean count ranging from 0.5
(for rare species) to 100 (for more common species). Different coefficients of variation and different
levels of replication, ranging from 4 to 100, were used to simulate data. The ratio of the means of the
GM plant and its comparator was set to 1, 0.75, 0.50 and 0.25. A ratio of 1 implies no difference
between the GM plant and its comparator. The simulated data were analysed by means of eight
different models, such that the most robust model could be selected. Results for difference testing are
the simulated size and power of the difference test as well as coverage of confidence intervals. We
also describe an approximate fast method to obtain the power of a difference test. A recommendation
is given about which difference test is to be preferred. Results for one-sided equivalence testing are the
simulated significance level of various methods, the simulated power and a fast way of calculating the
power. This also results in a recommendation about which equivalence test is to be preferred. There is
a discussion on the problem of zero inflation, i.e. when there are more zeros than predicted by the
count distribution.

Based on the results of this simulation study a checklist is proposed regarding the methodology to
perform for a prospective power analysis to guide experimental design. Further a protocol is proposed
on how to conduct the statistical analysis for both difference tests and equivalence tests. The analytical
protocol is summarised in a flow chart. Some simple examples are given. The next step in the AMIGA
project will be the implementation of statistical methods in user-friendly software.

The work for Deliverable D9.2 of the AMIGA project is reported in two parts:

e D9.2a describes statistical aspects of a protocol for single-environment GMO field studies.
e D9.2b describes a simulation study to investigate properties of difference and equivalence
tests.
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1 Introduction

1.1 Background

The EFSA Guidance on the environmental risk assessment (ERA) of genetically modified (GM) plants
(EFSA 2010) gives broad guidance on the design and analysis of field experiments. The AMIGA
research project aims at providing more detailed guidance in the form of protocols for design and
analysis. This report provides statistical elements for such protocols.

Recently, several papers have been published which aim at providing statistical guidance for ERA
field experiments. Perry et al. (2009) noted that the null hypothesis of a GM risk assessment test
should be that of non-equivalence, at a level of difference between the GM plant and its comparator
which was termed the Limit of Concern (LoC), and which have to be set before the experiments. The
LoC was defined as the minimum relevant ecological effect that is deemed biologically significant,
and is deemed of sufficient magnitude to cause harm. In Food-feed risk assessment a procedure has
been developed to derive LoCs from the variation between reference varieties in the same field trials
(van der Voet et al. 2011). Perry et al. (2009) found this approach less appropriate for ERA, but also
noted that experience suggests that the direct setting of LoCs is more feasible in ERA than in food-
feed risk assessment. The need for a prospective power analysis based on the LoC or other treatment
effect sizes of interest was stressed.

Goedhart et al. (2013, 2014) summarised statistical models that could be useful in the analysis of ERA
field experiments. For count data the Poisson distribution is the basic distribution, but it was noted that
over-dispersion and/or excess zeroes imply the need for more advanced distributions, such as the over-
dispersed Poisson, negative binomial, or Poisson-Lognormal distribution. Similarly, for quantal data,
the basic binomial distribution should be replaced by a beta-binomial or binomial-logitnormal
distribution. For both count and quantal data, excess zeroes could be handled assuming an additional
spike of structural zero results in addition to the other data (which may still contain incidental zero
values). Such models can be analysed directly (mixture models) or in a 2-step procedure (hurdle
models). Goedhart et al. (2013, 2014) provided a simulation tool to generate dummy field trial
datasets based on any of these distributions. For the analysis of such data estimation methods based on
knowing the right model behind the data can be used. Alternatively, in spite of all the complex
modelling options, a simple data transformation followed by normal-theory modelling is also an
option for analysis, and it is what is most commonly used in practice.

Semenov et al. (2013) reiterated the same ideas of prospective power analysis, equivalence testing, and
choosing statistical models for counts and quantal data. They provided some decision trees and a
checklist to assist the interpretation of statistical analyses of field trials.

More specific guidance on sample size calculation for ERA field trials has been given by Perry et al.
(2003), Prasifka et al. (2008) and Comas et al. (2013). These studies, however, arrive at very different
conclusions. For a twofold change in non-target counts (i.e. +100% or -50%) Perry et al. (2003, Table
6) conclude that 60 replicates provide a power of at least 85%, provided count levels are >5, and the
coefficient of variation is <100%. In contrast, for a similar power to detect a -50% change Prasifka et
al. (2008, Figures 1-4) found that on average less than 6 replicates would be sufficient in their datasets.
Comas et al. (2013, Table 2) seem to need only 3 replicates to attain, with power 80%, an expected
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capacity of field tests that not exceeds impacts of 100% relative to the comparator’s mean. As another
example, the study of Perry et al. (2003) suggests that in many cases it will be very difficult to detect
impacts of around 30% with sufficient power, whereas the other two studies suggest this is easily
possible in many cases. The differences between the reported studies were analysed and will be
reported in a subsequent paper. Here we complement them with results from new simulation studies,
which focus on the robustness of results under different models of the reality.

1.2 Relation to work program and overview

This report (D9.2a) and the companion report (D9.2b) describes research in AMIGA Work Package 9,
Task 3. This task focuses on single-environment trials, and is preparatory for Tasks 9.4 and 9.5 where
multi-environment trials are addressed. Several statistical issues regarding data types, equivalence
testing and test characteristics can however be better researched in the relatively simple situation of a
single-environment trial. This is also relevant because of the emphasis of the EFSA guidance
document on single-environment trials. The EFSA guidance document states that “For field trials,
since each field trial at a site on a particular occasion should have sufficient replication to be able to
yield a stand-alone analysis if required, this power analysis should relate to a single site”. Therefore
protocols for power analysis and statistical analysis of a single field trial have been developed in this
task.

We investigated the applicability of linear models (LM) based on normal distributions for transformed
variables relative to generalized linear models (GLM) for typical ERA data. This subtask involves
robustness studies, e.g. simulating counts according to a range of distributions and analysing the
resulting data using a range of analysis methods.

The report describes the development of protocols for setting sample sizes in experimental design
based on the desired performance of difference and equivalence tests.

The experimental design protocol includes a checklist which enables a risk assessor to provide full
information on the study, for example a list of endpoints and why they are chosen, a description of the
chosen experimental design with justification in terms of power, and the sampling strategy.

The statistical analysis protocol is summarised in a flow chart. This includes justification of the
distributional assumptions and the robustness of such assumptions, the generic form of the analysis
and why it was chosen, criteria for identification of outliers, the way in which difference and
equivalence testing is performed, and the way in which the results of the analysis should be presented.
In the further development the protocol will be accompanied by software for performing power
analysis, for fitting the statistical models and for reporting and displaying the results of the analysis.

1.3 Models simulating field trial data

In Goedhart et al. (2013) four statistical models have been described for simulation of count data:
Poisson (P), Over-dispersed Poisson (OP), Negative Binomial (NB), and Poisson-Lognormal (PL). In
addition, in this report we also include the Taylor power law model, which has been found to provide
adequate descriptions of practical data, with powers often between 1 and 2 (Taylor et al. 1978). The
power law only specifies a relation between variance and mean (V = apP), therefore in the simulations
a negative binomial distribution was used to generate data.

For simulation of presence/absence data Goedhart et al. (2013) described three statistical models:
Binomial (B), Beta-Binomial (BB) and Binomial-Logitnormal (BL).



1.4 Statistical analysis methods
For statistical analysis of data many methods are available. A first possibility is a maximum likelihood
analysis corresponding to exactly the simulation model. But it is often convenient to use simple
approximation methods, e.g.

¢ anormal-distribution analysis of transformed data (e.g. log- or square root transform for non-

negative or count data, empirical logit transform for presence/absence data),

e aquasi-likelihood analysis to address over-dispersion,

e an analysis based on a two-part (hurdle) model rather than a mixture distribution.

e an analysis of presence/absence derived from count data (all counts > 0 are reset to 1)

Several method were investigated in a simulation study (see companion report D9.2b and the summary
of conclusions in Section 2 of this report). In the protocol of the current report the focus is on two
categories of analysis:

1. linear models (assuming a normal distribution of errors) after an appropriate transformation of
the data;

2. generalized linear models (GLMs), which specify transformations for the expected values
rather than the data (McCullagh and Nelder, 1989).

1.5 Power analysis for difference and equivalence testing

The parameter of interest in tests is the ratio Q between expected counts for the GMO and the
comparator (CMP), or equivalently, the difference D between the log-counts. For a power analysis of
the difference test a range of alternative values for D has to be specified.

In an equivalence test the null hypothesis is Q = LoC. For a power analysis of the equivalence test a
range of alternative values for Q has to be specified, between 1 and LoC (if LoC>1), between LoC and
1 (if LoC<1), or between a lowe LoC and an upper LoC (if there are concerns in both directions).

For a non-equivalence test the null hypothesis is also D = LoC. But now the alternative values for Q
are those above the LoC (if LoC>1), below the LoC (if LoC<1), or both (if there are concerns in both
directions).



2 Summary of conclusions from a simulation study with count data

The simulation study is fully described in the companion report on Deliverable 9.2b. here we present a
short summary of the setup and conclusions.

2.1 Setup of study

Different models were used for simulating count data, and different methods for analysing the
generated data. Almost all datasets show overdispersion in practice, therefore only models allowing
for overdispersion were used in the simulation study. The Poisson model itself was not used.

Table 1. Models and transformations used in simulating and analysing count data

Abbreviation | Description used for used for
simulation analysis
OP overdispersed Poisson X X
NB negative binomial X X
PL Poisson-Lognormal X
P1 Power model with p=1.5 X X
P2 Power model with p=1.7 X
P3 Power model with p=1.99 X
GM Gamma X
LN Log(y+1) transformation X
SQ Sgrt(y) transformation X

The parameters used in the simulation were varied across a range of means and CV values, as
described in the simulation report D9.2b. Data for GMO and comparator counts were simulated under
effect sizes (ratios GMO to comparator) 1, 0.75, 0.5 and 0.25, thus focussing on negative effects of the
GMO.

Sizes and powers of tests were calculated by repeated simulation of data. In addition, estimation of
sizes and powers with the method of Lyles et al. (2007) which does not need the repeated simulation
was investigated.

2.2 Results for the Difference test
The main results from the simulation study for the difference test were:

1. Comparison of size of difference test for OP, P1 and GM when the LR test statistics is scaled by
Pearson’s Chi-squared or by the mean deviance
» scaling by Pearson has somewhat better properties
2. Comparison of size of test for LN, SQ, OP, NB, P1, P2, GM
» LN has generally the best properties
3. Power of test for LN, SQ, NB, P1, P2, GM for those settings for which the size is OK
» LN has the same power as OP when simulating according to OP
» LN has marginally smaller power than NB in some case when simulating according to NB;
however size of NB is frequently not satisfactory
» LN is at least as good as other models when simulating according to PL
LN is at least as good as other models when simulating according to P1
» LN is the method of choice for difference testing
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2.3

Properties of the (back-transformed) generalized confidence interval, i.e. coverage probabilities,

for the LN analysis are identical to those of the t-test. However this is only true for properties

under the null-hypothesis of equal means. Coverage of the LN interval deteriorates when the

guotient of the two means differs more strongly from one, and when the CV increases

» The LN interval approach can be used for difference testing; apparently it cannot always
be used for equivalence testing

The method of Lyles et al (2007), using a synthetic dataset, can be used to perform a prospective

power analysis for the LN analysis; this is in very good agreement with the simulated power

» There is no need to perform a simulation study for a prospective power analysis in the
simple situation of a GMO and a comparator.

Results for the Equivalence testing

The main results from the simulation study for the equivalence tests were:

6.

10.

Results are based on the estimate of the log(ratio) and its standard error (scaled by Pearson) for

GLM-like analysis methods, and on the Generalized CI for the LN and SQ analyses.

Comparison of size of one-sided equivalence test for LN, SQ, OP, NB, P1, P2, GM for effect

sizes 0.75, 0.5 and 0.25. The null-hypothesis is then Hy: mul/mu2 < effectsize

» Size of LN is generally bad (conservative as well as progressive)

> Size of OP seems to be best across the board. However conservative for small means, small
levels of replications and large CV values. Occasionally somewhat progressive.

For effect sizes 0, 0.75 and 0.5, and hypothetical one-sided LOC of 0.5 he power of EQ test is

very similar for OP, NB, P1, P2 and GM. Also the probability of “Equivalent more likely than

not” is very similar.

For effect size 0.50 one would expect a probability of 50% for “Equivalent more likely than not”.

This is generally the case, except for small means combined with small levels of replication.

» An OP based confidence interval can best be used for equivalence testing. This interval
does not always have the correct size.

The method of Lyles et al (2007) can also be used to approximate the power of the one-sided

equivalence test using OP. The approximation is less good than for the difference test; it is

however good enough as a first approximation especially for larger power values around 0.8. The

approximation is not good for data simulated with PL and large CVs possibly because the PL

distribution is then very un-similar to the overdispersed Poisson with the same CV.

» There is not always a need to perform a simulation study for a prospective power
analysis in the simple situation of a GMO and a comparator.

2.4 Conclusion from simulation study

Difference testing for count data can best be done by an LN analysis; based on this analysis a
generalized CI can be constructed on the original scale. The method of Lyles et al (2007) can be used
to approximate the power of this test.

Equivalence testing for count data can best be done by constructing a Cl after an OP analysis. This
procedure does not have perfect properties. When simulating according to OP, NB or P1 (all using
different variants of the negative binomial distribution) the method of Lyles et al. can be used to
approximate the power of the one-sided equivalence test.
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3 Statistical elements for a protocol for experimental design and
prospective power analysis

Attention is required before a field trial is performed to ensure that the experiment will be meaningful
to answer research questions. We present relevant points from a statistical viewpoint as a checklist.

Checklist

1. Describe all the questions the experiment is meant to answer, in words.

2. Prepare the list of endpoints. This may be divided into a list of primary endpoints (with strict
requirements regarding power of tests) and a list of secondary endpoints.

3. For each endpoint classify the measurement type, e.g. non-negative continuous data, count
data or fractions (percentage) data.

4. For each primary endpoint to be tested formulate the Limits of Concern (LOCs). For each
endpoint one lower and/or one upper LOCs can be set. For hon-negative continuous and count
data these will typically be ratios of GMO divided by CMP true values. For percentage data ...
Make explicit whether equivalence has to be proven (in a formal test at the set significance
level) or that it is sufficient to show ‘equivalence more likely than not’.

5. Describe the research questions in the form of null hypotheses, both for difference and
equivalence tests.

6. Set the significance levels (a) for statistical testing. Conventionally the level (size) will be e.g.
0.05. In the TOST approach to equivalence testing (Schuirmann 1987) the significance level
for the difference test is twice the significance level for the equivalence test.

7. Set the required power of the tests to detect differences at specified effect sizes. Typically
these effect sizes will be equal to the LoC. Conventional values for power are between 70 and
90%. If equivalence has to be proven, formulate effect sizes for which equivalence would
need to be proven using the equivalence test with pre-defined power (e.g. 80% power to proof
equivalence at an effect size of 0.75 (-25%) given an LoC of 0.5 (-50%).

8. Describe the structure of the proposed experimental design, e.g. completely randomized,
randomized block, split-plot , incomplete balanced block.

9. Describe the experimental units (typically plots or sub-plots), and give details of the
blocking structure (e.g. 4 main plots per randomized block, each split into 3 sub-plots) and
the treatment structure (e.g. three types of spraying and four crop varieties). Also describe if
interactions should be included.

10. Describe whether repeated measurements will be taken from the same experimental unit.

11. Provide a model formula partly specifying how the data will be analysed, using the syntax of
one of the common software tools for statistical analysis (SAS, GenStat, R, ...), for example
block/plot/subplot + treatment + variety. Include terms and a correlation structure for repeated
measurements if used. Indicate which factors are random rather than fixed.

12. For each primary endpoint provide prior estimates of central value and variation for a
measurement on one experimental unit. For non-negative continuous and count data the prior
estimates for central values will typically be expected values or geometric means, and the
prior estimates for variation will typically be coefficients of variation. Such values can be
derived from previous experiments or based on expert knowledge.

13. For each endpoint specify the simplest statistical analysis method that will be used (unless
there are unexpected deviations in the execution of the field study or unexpected data). See the
statistical analysis protocol for details.

14. Based on the replication and the prior estimates estimate the power of the proposed design
as a function of replication, for the difference test, and if needed also for the equivalence
test. In simple cases this can be performed using analytical formulae, in more complex cases
this can be found in published results of simulation studies such as performed in the AMIGA
project. If not available, a new simulation can be performed to estimate the power.
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15.

16.

17.

From the power curves derive the replication of the comparison of GMO to CMP in the
proposed design.

If the calculated minimal replication cannot be realized in practice, the power is insufficient.
In such case adapt the design or reformulate the research questions.
Randomise the treatments over the experimental units taking proper account of the design.
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4 Protocol for statistical analysis
1. The method of statistical analysis depends on the type of endpoint. For typical ecological
endpoints it is recommended to perform both an analysis based on data transformation and
normality, and an analysis on the original scale using an appropriate link function.

Table 2. Recommended data transformations and GLMs

Endpoint type data transformation® distribution and link function for GLM
Positive continuous x log(x) gamma, log

Non-negative continuous x | log(x+m), where m < min(x,) | gamma, log

Positive counts x log(x) over-dispersed Poisson, log

Counts x log(x+1) over-dispersed Poisson, log
Fractions0<x/n<1 logit(x) = log[(x)/(n-x)] over-dispersed binomial, logit
Fractions x/n log[(x+0.5)/(n-x+0.5)] over-dispersed binomial, logit

! For data transformation any base of logarithm can be chosen as is considered convenient, e.g. 2, e or
10. Note that the GLM link functions will use the natural logarithm (log.).

2. Analyse the transformed data by linear models: ANOVA if the design is balanced, or by a
mixed model (REML) if they are not.

3. Analyse the untransformed data by generalized linear models (GLM), or by a generalized
linear mixed models (GLMM) is there are additional stochastic terms in the model. Allow for
over-dispersion in counts and fractions.

4. Check the reasonableness of statistical assumptions, e.g. as follows:

a. Outliers: check data points with large standardised residuals. Compare analyses with
and without such data points in a sensitivity analysis.

b. QQ plot should show approximately a straight line

c. Plotresiduals vs. fitted values can be used to check if there is heteroscedasticity.

5. If statistical assumptions are unreasonable, then an ad-hoc strategy will have to be followed.
For example, non-parametric tests may be used. This protocol continues assuming that the
model fits sufficiently well.

6. From the ANOVA or REML results find estimators of the mean and standard errors of the
mean for GMO and CMP. From these distributions back-transform to distributions for the
means of GMO and CMP on the original scale (method, see D9.2b report).

7. From these back-transformed distributions create a distribution of the ratio GMO vs. CMP,
and from this find the generalized confidence limits as 2.5% and 97.5% points for two-sided
difference tests, or as 5% and 95% points for two one-sided difference tests. (Note: for visual
display it is recommended to calculate and display both limits, even if the test is one-sided.)

8. From the GLMM or GLM analysis find the best estimator of the mean, and 5% and 95%
confidence limits by a profile likelihood method (see D9.2b report). Back-transform the
estimate and the limits by the inverse link function. (Note: for visual display it is
recommended to calculate and display both limits, even if the test is one-sided.)

9. For each endpoint, plot point estimates and intervals, together with lines for the equality ratio
1, and the LoCs. In most cases plots on a logarithmic scale are advised. Use a recognizable
symbol (e.g. an arrowhead) for interval endpoints that represent two one-sided tests (TOST).

10. Use the intervals based on the linear models for the difference tests

11. Use the intervals based on the generalized linear models for the equivalence tests.

13



‘ Experimental data |

| Continuous data? |L>| Count data? }L>| Fraction data?
lyes

Transform
data (log)

Transform
data (log)

Transform
data (logit)

| Balanced data? | ‘ Gamma model | | 0-Poisson model ‘ | 0O-Binomial model
yes 1no
|ANOVA | |[REML |
| |
Ratio estimate and conf. limits Ratio estimate and conf. limits
by MC back-transformation by profile likelihood method

Graph to compare estimatesto 1 and LoC

Difference test: compareto 1 l | Equivalence test: compare to LoC |

Figure 1. Flow chart to guide statistical analysis (updated from Semenov et al. 2013).
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5 Statistical analysis examples

5.1 One- and two-sided difference and equivalence tests

Here we show an example for a situation where there is a concern about decreased levels of a counted
organism. We assume that the Limit of Concern has been set to 0.5 for three endpoints, i.e. there is
ecological concern if the count level in the GMO plots would be 50% or less of the level in the CMP
plots. There is no concern about increased levels. We assume a testing confidence level of 95%
throughout.

Results were obtained from programs in GenStat (VSN 2012). In Figure 2 we show data and results
for three endpoints, each with 2 x 20 counts (10 for CMP and 10 for GMO). In the joint graph the
intervals for difference testing and for equivalence testing are shown together for each endpoint. Note
that both intervals have arrowheads indicated that they represent two one-sided tests (TOST). This
simply means that these intervals are intended to cover 90% (rather than 95%), with 5% probability of
a true ratio below the lower endpoint and 5% probability of a true ratio above the upper endpoint.

For the one-sided difference test the upper limit can be compared to the ratio value 1 (which represents
the null hypothesis of equality). In this example the GMO is not significantly different from the CMP
for endpoint A, but it is for endpoints B and C. The P values for the one-sided difference test are
indicated next to the relevant interval upper limit in the graph.

For the one-sided equivalence test the lower limit can be compared to the ratio value 0.5 (which
represents the null hypothesis of border-line non-equivalence). In this example the GMO is equivalent
to the CMP for endpoints A and B, but it is hon-equivalent more likely than not for endpoint C. The P
values for the one-sided equivalence test are indicated next to the relevant interval lower limit in the
graph for endpoints A and B. For endpoint C the point estimate is already lower than the LOC,
therefore the result of a non-equivalence test is shown. In this case the non-equivalence is not
significant, hence the resulting classification as ‘non-equivalence more likely than not’.

It can be observed that in this case the two types of interval are reasonably similar, and the same
conclusions would have been obtained if only one type of interval had been used for both the
difference and the equivalence tests.

In Figure 3 the same data are analysed under a setting of two-sided concern. For the chosen examples
the observed ratios are 1 or less, so there is no indication from the data for an increase. The difference
intervals now are 95% rather than 90% intervals (and therefore slightly wider), and the P value for the
difference test is approximately double the one-sided P value for these endpoints. This is the normal
difference between on- and two-sided testing. Note, however, that the equivalence and non-
equivalence tests are not influenced (the additional tests w.r.t. the upper LOC are performed, but are
irrelevant for these data).
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Examples one-sided difference and equivalence tests
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Figure 2. Three examples of count data (n=20) where there is concern for a decreased level. Limit of Concern
(LOC) is 0.5 (GMO 50% of CMP, red vertical line). Bi-directed arrows represent 95% confidence intervals
corresponding with two one-sided tests (TOST). P values are shown near the arrowheads for the one-sided
difference (D) test (black) and the one-sided equivalence (E) or non-equivalence (NE) test (red) that is relevant
for LOC<1.

(A) Not significantly decreased and equivalent;

(B) Significantly decreased and equivalent;

(C) Significantly decreased and non-equivalence more likely than not.

Examples one-sided diffarence and equivalence tests

Figure 3. Same example as in Figure 2, but now with
concern for decrease and increase, and two Limits of

X e Concern, at ratios 0.5 and 2. Bars at the end of the difference
0408 & ————> interval indicate that this is a two-sided interval. The

equivalence TOST interval is unchanged.
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5.2 Difference and equivalence tests on a preliminary AMIGA potato data
Counts of non-target organisms were made in a field experiment with three potato varieties,
performed in 2013 in Valthermond, the Netherlands, as part of the AMIGA project.
Preliminary data (see Table 3) for two of the varieties (a GMO and a comparator) were
analysed by the statistical methods proposed in this report.

Table 3. AMIGA potato experiment Valthermond, July 2013. Counts per guild, preliminary data
(data courtesy Jenny Lazebnik, Wageningen University).

block variety treatment Predators Detrivores Parasitoids Fungivores Herbivores
6 CMP IPM 14 3 5 0 18
3 CMP IPM 12 10 10 1 23
2 CMP IPM 19 6 8 0 28
5 CMP IPM 20 9 7 0 16
7 CMP IPM 17 6 2 0 21
1 CwmP IPM 16 6 6 0 17
4 CMP IPM 8 5 1 0 11
6 CMP NoControl 6 4 4 0 25
5 CMP NoControl 20 7 4 1 12
1 CwmP NoControl 33 12 8 1 43
4 CMP NoControl 15 4 9 1 19
3 CMP NoControl 13 7 4 0 13
7 CMP NoControl 6 2 0 1 12
2 CMP NoControl 21 13 13 0 13
4 CMP WeeklySchedule 23 12 6 0 22
1 CMP WeeklySchedule 36 6 8 0 35
6 CMP WeeklySchedule 18 4 4 0 25
3 CMmP WeeklySchedule 15 7 3 0 17
2 CMmP WeeklySchedule 15 6 6 0 27
7 CMP WeeklySchedule 25 13 10 1 17
5 CMP WeeklySchedule 17 9 5 0 28
5 GMO IPM 19 2 4 1 17
4 GMO IPM 19 7 6 0 20
3 GMO IPM 25 8 8 0 29
7 GMO IPM 12 8 9 0 19
2 GMO IPM 20 6 11 3 12
6 GMO IPM 17 6 7 1 16
1 GMO IPM 10 10 7 0 33
5 GMO NoControl 8 6 6 0 27
2 GMO NoControl 13 5 8 0 26
1 GMO NoControl 15 9 5 1 24
7 GMO NoControl 11 4 1 0 10
6 GMO NoControl 8 8 4 0 11
4 GMO NoControl 15 7 3 0 34
3 GMO NoControl 11 9 7 0 22
3 GMO WeeklySchedule 12 13 9 1 39
1 GMO WeeklySchedule 19 12 11 1 34
6 GMO WeeklySchedule 11 7 1 1 20
5 GMO WeeklySchedule 13 5 1 0 16
4 GMO WeeklySchedule 15 8 7 0 23
7 GMO WeeklySchedule 13 6 6 0 18
2 GMO WeeklySchedule 18 9 10 0 23
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The results are shown in Figure 4. No prior discussion was made on appropriate Limits of
Concern, and these were set at 0.5 and 2 for illustration of the method. Two-sided difference
tests were performed.

No significant differences were found between the GMO and the CMP. For four of the five
guilds equivalence could be proven at the 95% confidence level. For the Fungivores guild the
observed numbers were very low (see Table 3). Consequently interval are wider. Equivalence
could not be proven, but is still more likely than not. Note that the P value is shown for the
equivalence test w.r.t. the nearest LoC, i.e. LoC=0.5 for endpoint A (Predators), and LoC=2
for the other endpoints.

Regarding the methodology, the two intervals are more similar when the observed counts are
higher (endpoints A and E) than when they are low (e.g. endpoint D).

Sticky traps by guild, Valthermond July 2013
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Figure 4. Analysis count data sticky traps per guild. AMIGA potato experiment Valthermond, July 2013. (A)
Predators, (B) Detrivores, (C) Parasitoids, (D) Fungivores, (E) Herbivores. Limits of Concern set to 0.5 and 2 for
illustration of the method only.
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1 Introduction

1.1 Statistical analysis and design for environmental risk assessment

A basic statistical approach to environmental risk assessment (ERA) has been outlined in the
EFSA Guidance Document (EFSA, 2010b) and in Perry et al. (2009). However, this approach
is not specified in great detail. The aim of the statistics work package is to make the EFSA
guidelines workable, practical and to fill in the gaps. This will result in a protocol which will
provide risk assessors with a step-by-step approach for both design and statistical analysis of
field trials. Statistical consideration of the EFSA for the safety evaluation of genetically
modified organisms (EFSA, 2010a) will be incorporated in this protocol. Work package 9 will
develop statistical concepts, methods, software and protocols for environmental risk
assessment (ERA) and post-market environmental monitoring (PMEM). Main objectives are:

e to develop appropriate statistical methods to handle Genotype by Environment
interaction in studies over multiple bio-geographic regions and under varying
agronomical conditions. This is expected to be a major issue in the context of
European ERA,;

e to introduce equivalence testing as a main approach for ERA in addition to difference
testing, and to establish protocols for experimental design based on acceptable test
characteristics;

e to develop statistical approaches for handling data sets with many low counts and
presence/absence data, as often encountered in ERA. Current practice is to use models
based on normal distributions but this may not be appropriate;

e to implement methods in software for practical use;

e to provide protocols and draft texts for guidelines. The protocol will provide risk
assessors with a set of evaluated, standardized and harmonized sampling and testing
methods for environmental risk assessment;

e to provide guidelines for multivariate statistical approaches appropriate for PMEM.

Existing datasets will be studied to characterise baseline conditions found in different bio-
geographic regions, and to typify the variation of genotypes and environments (Task 9.1).
Based on these results a simulation model will be built (Task 9.2), which will be used to test
various statistical approaches for data analysis in relation to the possible design of
experiments (e.g. sample size). Statistical approaches will use both difference and equivalence
testing, and a graphical display of assessment results will be developed (Task 9.3). Also for
multi-environment studies appropriate statistical methodology will be developed, including
the consideration of genotype by environment interaction (Task 9.4). The statistical methods
for analysis and design of field trials for Environmental Risk Assessment that give the best
performance will be described in protocols for both single-environment (Task 9.3) and multi-
environment studies (Task 9.6).

Tasks 9.1 (overview of existing ERA datasets) and 9.2 (simulation model for ERA data) are
described in Goedhart et al (2013, 2014). This report describes results of a simulation study to
investigate properties of various statistical models, which are used to perform difference and
equivalence testing, for analysing count data.
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1.2 A protocol for the design and analysis of single-environment field
trials - Task 9.3.

This task is preparatory for Tasks 9.4 and 9.5 where multi-environment trials are addressed.
Several statistical issues regarding data types, difference testing, equivalence testing and test
characteristics can however be better researched in the relatively simple situation of a single-
environment trial. This is also relevant because of the emphasis of the EFSA guidance
document on single-environment trials. The EFSA guidance document states that “For field
trials, since each field trial at a site on a particular occasion should have sufficient replication
to be able to yield a stand-alone analysis if required, this power analysis should relate to a
single site”. Therefore protocols for power analysis and statistical analysis of a single field
trial will be developed in this task. To develop such protocols it is important to known the
statistical properties of various tests which are used in practice, for example the power and
robustness of a test and whether the test has the correct significance level. This can best be
researched by means of a simulation model. This reports describes such a simulation study.

1.3 Overview of this report

The simulation model developed in Task 9.2 was used to generate count data for the simple,
but important, situation in which a field study is conducted to compare a GM plant with its
conventional counterpart . It is assumed that a completely randomized experiment is used and
that a single count, without excess zeros, of a non-target organism is available for each
experimental unit. Chapter 2 describes the setup of the simulation study. Four different count
distributions were used to simulate count data for a mean count ranging from 0.5 (for rare
species) to 100 (for more common species). Different coefficients of variation and different
levels of replication, ranging from 4 to 100, were used to simulate data. The ratio of the
means of the GM plant and its comparator was set to 1, 0.75, 0.50 and 0.25. A ratio of 1
implies no difference between the GM plant and its comparator. The simulated data were
analysed by means of eight different models, such that the most robust model could be
selected. Chapter 3 describes the results obtained for difference testing; this includes the
simulated size and power of the difference test as well as coverage of confidence intervals. It
also compares an approximate fast method to obtain the power of a difference test. Finally a
recommendation is given about which difference test is to be preferred. Chapter 4 deals with
one-sided equivalence testing and describes the simulated significance level of various
methods, the simulated power and a fast way of calculating the power. This also results in a
recommendation about which equivalence test is to be preferred. Chapter 5 shortly deals with
the problem of zero inflation, i.e. more zeros than predicted by the count distribution
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2 Setup of simulation study

2.1 Basic setup and simulation distributions

The most simple trial in which a GM plant is compared to its conventional counterpart is a
completely randomized field trial with level of replication N. In that simple case there are
only two parameters: the mean count of the non-target organism for the GM plant (u) and the
mean count (u.) for the comparator. In practice there might be repeated counts on the same
plots, but this is ignored in this simulation study. Goedhart et al (2013, 2014) describe five
statistical distributions commonly used to simulate counts: the Poisson distribution, the
overdispersed Poisson distribution, the negative binomial distribution, the Poisson-Lognormal
distribution and a distribution which follows Taylor’s power law. The Poisson distribution
was not used in this simulation study because it is generally believed (Perry et al 2003, Duan
et al, 2006) that counts of non-target organisms (NTQOs) typically have larger variance than
according to the Poisson distribution. Table 4 summarizes the four distributions which are
used to simulate data, with the dispersion parameter a2 as a function of the mean u and the
variation coefficient CV in the last column. There is no statistical distribution associated with
Taylor’s power law, as it only specifies a relationship between the variance and the mean.
Perry et al (2003) used the negative binomial distribution to simulate according to Taylor’s
power law employing a negative binomial dispersion parameter which follows from equating
the variance of the negative binomial to the power law. The same approach is followed here.
Using the negative binomial is however somewhat arbitrary, as e.g. the Poisson-Lognormal
has the same variance to mean relationship, but has a different distribution.

Table 4:  Distributions and values for the dispersion parameter used to simulate data.

Distribution Abbreviation | Mean | Variance | Dispersion parameter
a? as a function of CV
Overdispersed Poisson OP U o?u u (CV/100)2
Negative Binomial NB U U+ o?u? (CV/100)2 —1/pu
Poisson-Lognormal PL U U+ o?u? (CV/100)2 —1/pu
Power model (p=1.5) P1 u a?uts u%> (CV/100)?

The variance function of the Power model is more generally given by Var = ¢?u? in which p
is some power. In this simulation study p=1.5 was chosen because this results in a variance
function nicely in between the variance function for the overdispersed Poisson on the one
hand and the negative binomial and Poisson-Lognormal on the other hand.

The assumed variability in field testing of NTOs is mostly defined in terms of the coefficient
of variation (CV), for example Duan et al (2006), and this convention is also used here. The
mean u. of the comparator and the coefficient of variation CV define the dispersion parameter
a2, see Table 4. This same dispersion parameter is then used to generate counts for the
comparator and also for the GM plant. So for example with u-=10 and CV=100%, the
negative binomial dispersion parameter equals ¢2=0.9. In case the GM plant, in the same

simulation, has a mean u;=2.5, the corresponding CV value equals v2.5 + 0.9 x 2.52/2.5 =
114%. Moreover, a mean u;=1 has a corresponding CV=138% in this setting. This somewhat

24



higher CV value than for the comparator reflects the general believe that smaller means are
associated with larger CV values. The quotient of the CV value for the GM plant and the
comparator for each distribution is given below as a function of Q = ug/uc.

Overdispersed Poisson simulation distribution

The overdispersed Poisson distribution requires a dispersion parameter o which is larger
than or equal to 1, where the limiting value of 1 results in an ordinary Poisson distribution.
The quotient of the variation coefficients is given by

CVG= Uz/ﬂcz He _ l
CVe o?/uc Hg Q

This implies that with Q = 0.25 the GM plant has a CV value which is twice as large as the CV
of the comparator, irrespective of the value of y..

Negative binomial and Poisson-Lognormal simulation distributions

The negative binomial and Poisson-Lognormal distributions both require a dispersion
parameter a2 which is larger than 0. The quotient of the variation coefficients is given by a
more complicated formula:

CVe (,uG+0'2,ué)/ué: 1 1-0
CVe (e + o2pg)/ué Q pc (CV/100)2

This will be close to 1 for large CV values and for large values of p.

Power law simulation distribution

For simulating according to the Power model, first the following equation is solved for t:
a?uP = u + tu?; subsequently data are simulated according to a negative binomial
distribution with dispersion parameter 7. Note that the equation is separately solved for the
comparator, with mean u., and for the GMO with mean u; = Qu,. This might results in a
combination of parameter values which is not allowed. Suppose, as an example, u-=9, u;=1
and CV=50%. The dispersion parameter of the Power model with p=1.5 is then given by
02=0.75. However the equation for u: 1+71% = 0.75*1*° cannot be solved for positive .

The quotient of the coefficients of variation is given by

CVe _ |o2ub/uz Qosv-1
CVe  Jo?ul/ud

This implies that with Q = 0.25 and p=1.5 the GM plant has a CV value which is v/2 as large
as the CV of the comparator.
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2.2 Parameter values used in the simulation

Depending on the NTO at hand, mean counts can be very small but can also be quite large.
A range of 0.5 to 100 for the mean . of the comparator is therefore employed.

Rather than focusing on the difference between u. and g, it is more natural to focus on the
ratio Q = ug/uc of the two means. Generally accepted values in field testing for Q are
between 0.5 and 0.25 (Comas et al, 2012). We used values 1, 0.75, 0.5 and 0.25. The value
of 1, i.e. no difference between the comparator and the GM plant, is specifically meant to
examine whether the difference test attains its nominal a-level. The other values of Q assume
that the GM plant has a negative effect on the mean count.

The assumed variability in field testing of NTOs is mostly defined in terms of the coefficient
of variation (CV). Duan et al (2006) present graphs with CV values ranging from 25% to
200% with generally low CV values for means larger than 5 and CV values up to 200% for
means close to zero. In this study, five different values of CV are used for different values of
Uc as given in Figure 5 and Table 5. Compared to Duan et al (2006) the larger CV values used
in this simulation study seem to be at the upper end of what can be expected in practical field
trials.

Figure5: Combinations of comparator means u. and coefficients of variation CV. The solid
line denotes the coefficient of variation of a Poisson distribution.
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Finally the level of replication N must be specified. Environmental risk assessment of GM
plants is typically performed in experiments with a small number of plots. This is (partly) due
to the fact that relatively large plots and large guard rows are required in order to measure
effects on NTOs without bias, see Perry et al (2003). It is therefore that such experiments are
frequently repeated in different years and different locations such that larger levels of
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replication are obtained. A range of 4 to 100 for the level of replication N is employed in this
study with some emphasis on lower values.

Table 5 summarizes the parameter values which are used in the simulation study. These
values result in 1600 parameter combinations. For each combination of the simulation
distribution (OP, NB, PL and P1) and parameter values 1000 datasets were simulated. Each
dataset was analysed using the models given in the next session and an appropriate difference
test at the 5% level was performed (details are given below). The proportion of datasets for
which the difference test is rejected then gives an estimate of the true significance level («) of
the test when there is no difference, i.e. @Q=1, and the power (f) of the test when there is a
difference, i.e. Q#1. These are only estimates of the true size of the test. Suppose that the size
of the test is indeed exactly 5%, then with 1000 simulations a 99% prediction interval for the
number of times the null hypothesis will be rejected is given by (33, 67) resulting in an
interval of 3.3% — 6.7% for the true size. So only when the simulated significance level is
outside this interval there is an indication that the true level of the test does not equal 5%.

Table5:  Parameters used in the simulation study.

Parameter Values used in simulation
Mean p. of comparator 0.5, 1, 2, 5, 10, 20, 50, 100
Ratio Q = ug/uc 1, 0.75, 0.5, 0.25
Number of replication N 4, 6, 8, 10, 15, 20, 30, 40, 60, 100
Coefficient of variation CV for comparator
He V-1 V-2 V-3 CV-4 V-5
0.5 150 200 300 400 500
1 150 200 300 400 500
2 100 150 200 300 400
5 75 100 150 200 300
10 50 75 100 150 200
20 40 50 75 100 150
50 20 30 40 50 75
100 15 20 30 40 50

Data were simulated using the statistical package GenStat (VSN international, 2013).

2.3 Statistical models for analysis

Fitting the Poisson-Lognormal model by means of maximum likelihood requires (adaptive)
Gauss-Hermite integration within an iterative weighted least squares algorithm. This
algorithm turned out to fail too frequently for data with small means, small levels of
replication and/or small coefficients of variation. Therefor the Poisson-Lognormal model was
not used to analyse simulated data. The other models with which each dataset was analysed
are summarized in Table 6. All models were fitted using standard facilities in the statistical
package GenStat (VSN international, 2013). Details for each analysis model are given below.
A difference test for all models can be obtained by comparison of the fit of the model, more
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specifically the deviance, under the null-hypothesis Hy: Q = 1 and the fit of the model under
the alternative hypothesis H;: Q # 1.

Table 6:  Statistical models used to analyse the simulated data.

Analysis model Abbreviation Type of difference test
Log transformation LN t-test
Squared-root transformation SQ t-test
Overdispersed-Poisson OP scaled deviance difference
Negative binomial NB deviance difference
Power model p=1.5 P1 scaled deviance difference
Power model p=1.7 P2 scaled deviance difference
Power model p=1.99 P3 scaled deviance difference
Gamma model GM scaled deviance difference

LN: Log transformation followed by a t-test

The count data are log-transformed after the addition of 1 to prevent taking the logarithm of
zero. The simple two-sample t-test is then applied to the log transformed counts. The log
transformation stabilizes the variance for distributions with a standard deviation which is
proportional to the mean, or Var(Y) o u?. This transformation therefore seems appropriate
for the negative binomial and the Poisson-lognormal distribution with means that are not too
small.

The two-sample t-test employs an estimate of the difference between the GM plant and the
comparator on the transformed logarithmic scale. This difference is however a quantity that is
not easy to interpret, especially when the underlying means u; and u. are small. Instead
interest is in the ratio Q = u¢/uc. The so-called generalized confidence interval approach can
be applied to provide an interval for the ratio of two lognormal means, see Krishnamoorthy &
Mathew (2003) and Chen and Zou (2006). According to these authors such an interval has
excellent coverage probabilities. This approach uses the fact that, assuming that the log-
transformed counts follow a normal distribution, the residual mean square follows a scaled
Chi-squared distribution and that the two sample means follow a normal distribution which is
independent of the Chi-squared distribution. A simulation approach is then used to generate a
large sample for the ratio of the two lognormal means, accounting for the addition of 1.
Percentiles of this large sample then define a confidence interval. More specifically, with X
and X the two sample means on the log-transformed scale, S2 the estimate of the variance on
the transformed scale and 2N-2 the number of degrees of freedom for S2, a large sample for
the ratio Q is generated in the following way

1. Arandom draw Chi is generated by means of Chi = (2N-2) S?/x,n—» Where y,n_» IS
a random draw from a Chi-squared distribution with 2N-2 degrees of freedom;

2. N isarandom draw from a normal distribution with mean X and variance Chi/N,

N, is arandom draw from a normal distribution with mean X and variance Chi/N;

4. Back-transform N, by means of N. = exp(N; + Chi/2) and similarly N;. Note that
the back-transformation uses the equation for the mean of the lognormal distribution;

w
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5. Subtract 1 from N, and N¢; this accounts for the addition of 1 before log-transforming
the count. This might sometimes result in a negative value for N or N. Such values
are replaced by a small positive value, i.e. by 0.0001.

6. Calculate the ratio N; /N,

7. Repeat steps 1-6 many times, e.g. 10.000 or when more precise results need to be
obtained 100.000 times. Calculate appropriate percentiles of the large sample which is
the generalized confidence interval.

The generalized confidence interval can be used for difference testing as well as for
equivalence testing.

SQ: Squared root transformation followed by a t-test

The squared root transformation is frequently used as an alternative for the log transform, and
a simple t-test is also performed on squared root transformed counts. This transformation
stabilizes the variance when the variance is proportional to the mean, or Var(Y) « u. This
transformation is therefore especially appropriate for the overdispersed Poisson distribution.

The generalized confidence interval approach can also be employed to obtain an interval for
the ratio on the original scale. The only modification to the seven steps described for the LN
analysis is the back-transformation in step 4. For the squared root transform this is given by
N¢ = NZ + Chi which employs the well-known relation Var(X) = EX? — (EX)? where E
denoted taking the expectation. Step 5 has to be skipped.

OP: Overdispersed Poisson by a GLM-like analysis

There does not seem to be standard software to fit the overdispersed Poisson distribution by
means of maximum likelihood. However, a common way to analyse overdispersed counts is
to use the quasi-likelihood approach of McCullagh and Nelder (1989). This amounts to fitting
the ordinary log-linear model, which employs the Poisson distribution and a log-link, and to
scale standard errors of parameter estimates by means of the squared root of an estimate of the
dispersion parameter. This is the approach which is followed here. A scaled likelihood ratio
statistic is obtained by calculating the scaled deviance difference of the model under H, and
H,. Scaling can be done by the mean deviance or by Pearson’s Chi-squared statistic, both
under H,, and both methods are compared. The scaled likelihood ratio statistic is compared
with a F distribution with 1 and 2N-2 degrees of freedom to obtain a p-value.

In this model the underlying mean is log-transformed, rather than taking logs of the observed
counts. This implies that the logarithm of the ratio of the two means, i.e. log(Q), is directly
estimated in this model. A so-called Wald test statistic (Buse, 1982) can then be used for
difference testing. This equals the quotient of the estimate of log(Q) and its standard error,
and this is usually compared to a t-distribution to compensate for the estimation of the
dispersion parameter. However it is generally believed that the likelihood ratio statistic has
better statistical properties (McCullagh and Nelder, 1989). Moreover the Wald statistics
breaks down when either sample only contains zero’s since the estimate of log(Q), and its
standard error, then becomes plus or minus infinity. So difference testing is based on the
scaled likelihood ratio test. Equivalence testing under this model is however based on the
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estimate of log(Q) and its standard error, scaled by Pearson’s statistic, which can be used to
generate a confidence interval and thus to perform equivalence testing for arbitrary limits of
concern. An alternative would have been to calculate a so-called profile likelihood interval
but this requires a search algorithm which was considered to be too computer intensive in this
simulation study.

NB: Negative binomial model by a GLM-like analysis

The negative binomial regression model, with logarithmic link, is fitted to the counts by
means of maximum likelihood. The likelihood ratio test is calculated and compared to a
Chi-squared(1) distribution. The dispersion parameter of the negative binomial distribution
was bounded to the interval [0.001, 1000] to avoid numerical problems.

The estimate of log(Q) and its standard error is used for equivalence testing.

P1, P2 and P3: Power Law model by a GLM-like analysis

The Power model is defined by a variance-to-mean relationship and there is no true statistical
distribution associated with it. Therefore, like the overdispersed Poisson model, quasi
likelihood is used to fit the model. The quasi deviance D can be obtained by employing its
definition, see McCullagh & Nelder (1989):
y
N y
Diw =2 f Var(t) dt
u

For Taylors Power Law, i.e. Var(t) = t#, the quasi deviance becomes

1-8 2-§

y t1-8 £2-P y _, yz—ﬁ yz—B , y ,ul_B #Z_B
1-p 2—3‘;‘ 1-8 2-P
2-p 1-B 2-B
y Y H 14
=2 - + = 2(z1—-2z2+ 23
a-mpe-p 1-p T 2-p]" = )
The model is fitted using GenStats facilities for generalized linear models with non-standard
variance functions. The GenStat directives for defining the model are as follows, where
‘response’ is the observed count, ‘power’ is the value of p in the variance function and ‘z1°,
‘z2’ and ‘z3’ are the three terms between squared brackets in the equation above.

y
=2 [ Yot =
D(y,y)-z‘f-—ay—dt—-Z[

u

CALCULATE bl,b2 = 1,2 - power
EXPRESSIO dcalc[l] ; VALUE=!e(vfunction = mu**power)
EXPRESSIO dcalc[2] ; VALUE=!e(zl = response**b2/ (bl*b2))

EXPRESSIO dcalc[3] ; VALUE=!e(z2 = response*mu**bl/bl)

EXPRESSIO dcalc[4] ; VALUE=!e(z3 = mu**b2/b2)

EXPRESSIO dcalc[5] ; VALUE=!e (deviance = 2*(z1-z2+z3))

MODEL [DISTRIBUTION=calculated ; DCALCULATION=dcalc[] ; \
LINK=log ; DMETHOD=pearson ; DISPERSION=*] response ; \
FITTED=fitted ; VFUNCTION=vfunction ; DEVIANCE=deviance

( (
( (
[ (
[ (

30



To obtain a test-statistic the deviance difference can be scaled by the mean deviance or
Pearson’s test statistic, both under H;. The test statistic was compared to a F distribution with
1 and 2N-2 degrees of freedom. The power model was fitted with a fixed power p of 1.5, of
1.7 and of 1.99, and these are denoted by P1, P2 and P3 respectively. Note that a power p=2
is not allowed by the model as this implies division by zero.

A confidence interval is obtained for the estimate of log(Q) and its standard error, scaled by
Pearson’s statistic and using a t-distribution, and this is used for equivalence testing.

GM: Gamma model using a GLM-like analysis

The final analysis is by means of the Gamma distribution employing a log-link. Since the
gamma distribution cannot handle zero observations, zeroes were replaced by 0.001. Again
the deviance difference was scaled by the mean deviance or Pearson’s chi-squared and
compared with a F distribution with 1 and N-2 degrees of freedom to obtain a p-value. Also a
confidence interval is obtained for the estimate of log(Q) and its standard error, scaled by
Pearson’s statistic and using a t-distribution, and this is used for equivalence testing.

Special cases

For small means and small levels of replication sample means can easily become zero for a
simulated dataset. When both sample means equal zero, or more generally when both
variances within samples equal zero, the analysis according to the log-transformation cannot
be performed because the residual mean square equals zero. Some decision has to be taken to
deal with such situations. Consider therefore the case with 4 observations of the comparator
and 4 observations for the GM plant, with obvious generalizations to more observations. The
four cases below are then special.

A. Sample 1 equals {0, 0, 0, 0} and sample 2 equals {0, 0, 0, 0}. In this case there is no
information and the deviance under the null model and under the alternative model are
both zero for all models. The p-value for the difference test is set to 1 for all analysis
models as there is no indication of a difference between the two samples. For the most
extreme parameter combination uz=0.5, CV=500, 9=0.25, N=4 and the overdispersed
Poisson distribution this situation occurs for 570 of the 1000 simulated datasets. For
negative binomial, Poisson-LogNormal and Power models these numbers are
respectively 511, 287 and 565. Clearly there is also no information for calculating a
confidence interval and thus formal equivalence testing cannot be performed.
Graphical results for equivalence testing present the proportion of these cases
separately. Note that this case can be considered as “equivalent more likely than not”.

B. Sample 1 equals {0, 0, 0, 0} and sample 2 equals {c, c, c, ¢} where c is some positive
value. The deviance under the alternative model equals zero and so no test statistic can
be calculated. However this situation is very rare. For the Poisson-LogNormal
distribution there are 28 parameter combinations for which this situation occurs with a
maximum of 5 out of 1000 such datasets at most. For the other distributions this
situation occurs even less. These situations are therefore discarded, i.e. the
corresponding p-value is set to missing.
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C. Sample 1 equals {0, 0, 0, 0} and sample 2 has different values with a positive
variance. In this case all the p-values can be calculated in the usual way.

D. The mean of both samples are positive with a zero variance, e.g. {1, 1, 1, 1} and {3, 3,
3, 3}. This is essentially the same as case B although it will occur even rarely. There
are only 2 simulated datasets for which this occurs and these are discarded.

3 Results for difference testing

3.1 General remarks on difference testing

A key element in environmental risk assessment it to test whether the GM plant is different
from its conventional counterpart. The aim of a statistical difference test is to reject the null
hypothesis of no difference between the GM plant and its comparator. A significant difference
test is then a “proof of difference”, but this does not state that the difference is biologically
relevant and constitutes a true hazard to the environment. Poorly designed experiments with
low levels of replication may have low statistical power of finding a true difference. So the
absence of a significant difference is not a proof that there is no difference, or “absence of
evidence is not evidence of absence” (Altman and Bland, 1995). There are two possible types
of errors for a difference test. A type | error occurs when the null hypothesis of no difference
is falsely rejected when it is actually true. In that case the incorrect conclusion is drawn that
the GM plant is different from its comparator. A type Il error on the other hand occurs when
the null hypothesis is not rejected although it is untrue. Typically the probability of a type |
error, also known as the size of the test or a, is set to some pre-described small value such as
5%, implying that in 5% of all tests the null hypothesis of no difference is falsely rejected.
Given the size of the test, the probability of a type Il error depends on the true difference, the
level of variation and the level of replication. Note that the power of a test, frequently denoted
by B, equals one minus the probability of a type Il error.

The size of tests based on the normal distribution, such as the t-test, is exact. However tests
based on other distributions, like the Poisson and the negative binomial, depend on asymptotic
(meaning large levels of replication) arguments and are therefore not exact. This implies that a
test, which is supposed to have a size of say 5%, might in practice have a different size. When
the actual size of the test is larger than « the test is said to be progressive, when it is smaller
the test is said to be conservative. Progressive tests are considered to be specifically bad
because the null hypothesis of no difference is falsely rejected more often than the pre-
described a level. Frequently the true underlying distribution of counts is not known. We
might for instance falsely analyse data according to the Poisson distribution while in practice
the data follow the negative binomial distribution or vice versa. This is particularly likely to
happen when counts are small, as encountered frequently in ERA experiments, because then it
is hard to discriminate between probability models. This ignorance about the true underlying
distribution might result in difference tests to become even more progressive or conservative.

The power of a difference test based on the normal distribution can be calculated exactly. For
non-normal distributions, small sample properties of difference tests are not straightforward.
A simulation approach for sample size calculations for a difference test is employed by many
authors, e.g. Shieh (2001) and Hrdlickové (2006) for the Poisson distribution, Shieh (2001)
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and Demidenko (2008) for the binomial distribution, Aban et al (2009) and Friede and
Schmidli (2010) for the negative binomial distribution. A general practical approach to
computing power for non-normal distributions is given by Lyles et al (2007).

In the remainder of this chapter simulation results of various properties of the difference tests
are presented. All results presented are for a two-sided test of no difference with a
significance level a=5%. Detailed results are given in a separate document with Appendices.

3.2 Scaling of the deviance difference for OP, P1, P2, P3 and GM

When data are analysed by means of the overdispersed Poisson, Power or Gamma model the
likelihood ratio statistic can be scaled by means of the mean deviance or by means of
Pearson’s chi-squared, both for the full model. The simulated significance level of these two
variants of the test statistic for specific parameter combinations is given in Figure 6 and
Figure 7 when data are simulated by means of the negative binomial distribution with
coefficients of variation as given by CV-1 and CV-3, and in Figure 8 and Figure 9 when data
are simulated by means of the Poisson-Lognormal distribution. Each small plot has a range of
0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes the assumed
«=0.05. The red lines denote values 0.033 and 0.067 which provide a range that could be
expected when 1000 datasets are simulated. So simulated sizes within the red lines are OK
and such values are denoted by open circles. Values outside this range are denoted by filled
circles, while values larger than 0.096 are given by triangles. Results for all parameter
combinations are given in Appendix 1 A-D.

Overdispersed Poisson (OP) as analysis model

For small CV values (Figure 6 and Figure 8) and the overdispersed Poisson distribution as
analysis model the size of both test statistics is good for values of u > 2. For smaller values
of u more replications are needed to attain the correct size. Scaling by means of Pearson’s
chi-squared seems to have the edge over scaling by means of the mean deviance. For larger
CV values (Figure 7 and Figure 9) the size of the both test statistics is generally bad for u < 2.
For larger replication levels and larger u scaling by means of Pearson’s chi-squared results in
a better size than scaling by means of the mean deviance.

Power(1.5) (P1) as analysis model

For small CV values (Figure 6 and Figure 8) and the Power(1.5) analysis model, scaling by
means of the mean deviance generally gives a conservative test for smaller values of u, while
scaling by means of Pearson’s chi-squared has correct size, except for small values of u and
low level of replication N. For larger CV values (Figure 7 and Figure 9) both test statistics are
progressive for small values of u even for large replication levels N. For larger u and
simulating according to the negative binomial scaling by means of the mean deviance has
better size than scaling by means of Pearson’s chi-squared. However when data are simulated
by means of the Poisson-LogNormal this is the other way around

Gamma (GM) as analysis model
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For small CV values (Figure 6 and Figure 8) and the Gamma analysis model, scaling by
means of the mean deviance is very conservative, while scaling by means of Pearson’s chi-
squared generally has the correct size. For larger CV values (Figure 7 and Figure 9) both test
statistics perform badly for values 4 < 5. For larger means scaling by means of Pearson does
have the edge especially when simulating according to the negative binomial distribution.

Figure 6:
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u=0.5

Size of the test when the deviance difference is scaled by means of the mean deviance

and by means of Pearson’s chi-squared. Data are simulated by the negative binomial
distribution with CV-1 values.
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Figure 7:

Size of the test when the deviance difference is scaled by means of the mean deviance

and by means of Pearson’s chi-squared. Data are simulated by the negative binomial
distribution with CV-3 values.
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Figure 8:  Size of the test when the deviance difference is scaled by means of the mean deviance
and by means of Pearson’s chi-squared. Data are simulated by the Poisson-
LogNormal distribution with CV-1 values.
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Figure 9:  Size of the test when the deviance difference is scaled by means of the mean deviance
and by means of Pearson’s chi-squared. Data are simulated by the Poisson-
LogNormal distribution with CV-3 values.
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Conclusion

Scaling of the deviance difference by means of Pearson statistic seems to have somewhat
better properties especially when the coefficient of variation is small. This conclusion is not
only based on Figure 6 to Figure 9 but also on the results presented in Appendix 1 A-D.
Therefore in subsequent comparisons the deviance difference will be scaled by means of
Pearson’s chi-squared for analysis according to the overdispersed-Poisson, the Power models
and the Gamma model.

3.3 Simulated significance level of difference test

Having decided that scaling of the deviance difference by means of Pearson’s statistic for OP,
P1, P2, P3 and GM generally has better properties than scaling by means of the mean
deviance, the size of all analysis methods can be compared. Full details of the size of the
difference test for all parameter combinations and simulation distributions are given in
Appendix 1 E-H. Results for the P3 model, with power 1.99, are not displayed since they are
very similar to the results for the Gamma (GM) model. Results for specific combinations are
given in Figure 10 to Figure 13.
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Figure 10: Size of the difference test under various analysis models for data simulated by the
negative binomial distribution with CV-1 values.
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Figure 11: Size of the difference test under various analysis models for data simulated by the
negative binomial distribution with CV-3 values.
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Figure 12: Size of the difference test under various analysis models for data simulated by the
Poisson-LogNormal distribution with CV-1 values.
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Figure 13: Size of the difference test under various analysis models for data simulated by the
Poisson-LogNormal distribution with CV-3 values.
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The size of the LN and SQ analysis is extremely good for all parameter combinations, except
for small values of u combined with large coefficients of variations CV and low levels of
replication N. In such cases the LN and SQ tests are conservative. The GLM-like models
result in sometimes progressive test especially for small means in combination with a large
coefficient of variation. Among the GLM-like models there is no clear winner although the
OP analysis seems to outperform the other GLM models somewhat, especially when data are
simulated according to the Poisson-Lognormal distribution.

The simulated significance level for all parameter combinations and simulation distributions
is summarized in Figure 14 to Figure 17. The symbols in Figure 14 to Figure 17 have the
following meaning: open circle denotes that the test is conservative for lower levels of
replication and has the correct size for larger replication; closed circle denotes that the test has
correct size for all replication levels; cross means that the test is mainly progressive; number
denotes that the test has correct size for levels of replication larger than the plotted number.
These plots can be used to quickly check for which parameter combination, and for which
level of replication, the difference test has correct size. These plots clearly indicate, once
again, that the LN and SQ analysis models have superior size. The best alternative, especially
for for larger means and smaller coefficients of variation is the OP analysis model.

Figure 14: Summary of size of difference test; data simulated by Overdispersed Poisson
(see text for explanation of symbols)
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