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Abstract 
 

One of the aims of the EU project AMIGA (Assessing and monitoring the impacts of genetically 

modified plants on agro-ecosystems) is to provide protocols on how to perform field studies, and on 

how to analyse data obtained from such studies. Workpackage 9 of AMIGA works on statistical 

methods relevant for evaluation of non-target effects, and the current deliverable proposes elements 

for protocols of experimental design and statistical analysis.  

For the most common data type in ecological field studies, i.e. count data, a large simulation study was 

conducted, including multiple ways of simulating count data, and multiple ways of statistical analysis. 

Four different count distributions were used to simulate count data for a mean count ranging from 0.5 

(for rare species) to 100 (for more common species). Different coefficients of variation and different 

levels of replication, ranging from 4 to 100, were used to simulate data. The ratio of the means of the 

GM plant and its comparator was set to 1, 0.75, 0.50 and 0.25. A ratio of 1 implies no difference 

between the GM plant and its comparator. The simulated data were analysed by means of eight 

different models, such that the most robust model could be selected. Results for difference testing are 

the simulated size and power of the difference test as well as coverage of confidence intervals. We 

also describe an approximate fast method to obtain the power of a difference test. A recommendation 

is given about which difference test is to be preferred. Results for one-sided equivalence testing are the 

simulated significance level of various methods, the simulated power and a fast way of calculating the 

power. This also results in a recommendation about which equivalence test is to be preferred. There is 

a discussion on the problem of zero inflation, i.e. when there are more zeros than predicted by the 

count distribution.  

Based on the results of this simulation study a checklist is proposed regarding the methodology to 

perform for a prospective power analysis to guide experimental design. Further a protocol is proposed 

on how to conduct the statistical analysis for both difference tests and equivalence tests. The analytical 

protocol is summarised in a flow chart. Some simple examples are given. The next step in the AMIGA 

project will be the implementation of statistical methods in user-friendly software. 

The work for Deliverable D9.2 of the AMIGA project is reported in two parts: 

 D9.2a describes statistical aspects of a protocol for single-environment GMO field studies. 

 D9.2b describes a simulation study to investigate properties of difference and equivalence 

tests. 
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1 Introduction 

1.1 Background 

The EFSA Guidance on the environmental risk assessment (ERA) of genetically modified (GM) plants 

(EFSA 2010) gives broad guidance on the design and analysis of field experiments. The AMIGA 

research project aims at providing more detailed guidance in the form of protocols for design and 

analysis. This report provides statistical elements for such protocols. 

 

Recently, several papers have been published which aim at providing statistical guidance for ERA 

field experiments. Perry et al. (2009) noted that the null hypothesis of a GM risk assessment test 

should be that of non-equivalence, at a level of difference between the GM plant and its comparator 

which was termed the Limit of Concern (LoC), and which have to be set before the experiments. The 

LoC was defined as the minimum relevant ecological effect that is deemed biologically significant, 

and is deemed of sufficient magnitude to cause harm. In Food-feed risk assessment a procedure has 

been developed to derive LoCs from the variation between reference varieties in the same field trials 

(van der Voet et al. 2011). Perry et al. (2009) found this approach less appropriate for ERA, but also 

noted that experience suggests that the direct setting of LoCs is more feasible in ERA than in food-

feed risk assessment. The need for a prospective power analysis based on the LoC or other treatment 

effect sizes of interest was stressed. 

 

Goedhart et al. (2013, 2014) summarised statistical models that could be useful in the analysis of ERA 

field experiments. For count data the Poisson distribution is the basic distribution, but it was noted that 

over-dispersion and/or excess zeroes imply the need for more advanced distributions, such as the over-

dispersed Poisson, negative binomial, or Poisson-Lognormal distribution. Similarly, for quantal data, 

the basic binomial distribution should be replaced by a beta-binomial or binomial-logitnormal 

distribution. For both count and quantal data, excess zeroes could be handled assuming an additional 

spike of structural zero results in addition to the other data (which may still contain incidental zero 

values). Such models can be analysed directly (mixture models) or in a 2-step procedure (hurdle 

models). Goedhart et al. (2013, 2014) provided a simulation tool to generate dummy field trial 

datasets based on any of these distributions. For the analysis of such data estimation methods based on 

knowing the right model behind the data can be used. Alternatively, in spite of all the complex 

modelling options, a simple data transformation followed by normal-theory modelling is also an 

option for analysis, and it is what is most commonly used in practice.  

 

Semenov et al. (2013) reiterated the same ideas of prospective power analysis, equivalence testing, and 

choosing statistical models for counts and quantal data. They provided some decision trees and a 

checklist to assist the interpretation of statistical analyses of field trials.  

 

More specific guidance on sample size calculation for ERA field trials has been given by Perry et al. 

(2003), Prasifka et al. (2008) and Comas et al. (2013). These studies, however, arrive at very different 

conclusions. For a twofold change in non-target counts (i.e. +100% or -50%) Perry et al. (2003, Table 

6) conclude that 60 replicates provide a power of at least 85%, provided count levels are ≥5, and the 

coefficient of variation is ≤100%. In contrast, for a similar power to detect a -50% change Prasifka et 

al. (2008, Figures 1-4) found that on average less than 6 replicates would be sufficient in their datasets. 

Comas et al. (2013, Table 2) seem to need only 3 replicates to attain, with power 80%, an expected 
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capacity of field tests that not exceeds impacts of 100% relative to the comparator’s mean. As another 

example, the study of Perry et al. (2003) suggests that in many cases it will be very difficult to detect 

impacts of around 30% with sufficient power, whereas the other two studies suggest this is easily 

possible in many cases. The differences between the reported studies were analysed and will be 

reported in a subsequent paper. Here we complement them with results from new simulation studies, 

which focus on the robustness of results under different models of the reality. 

 

1.2 Relation to work program and overview 

This report (D9.2a)  and the companion report (D9.2b) describes research in AMIGA Work Package 9, 

Task 3. This task focuses on single-environment trials, and is preparatory for Tasks 9.4 and 9.5 where 

multi-environment trials are addressed. Several statistical issues regarding data types, equivalence 

testing and test characteristics can however be better researched in the relatively simple situation of a 

single-environment trial. This is also relevant because of the emphasis of the EFSA guidance 

document on single-environment trials. The EFSA guidance document states that “For field trials, 

since each field trial at a site on a particular occasion should have sufficient replication to be able to 

yield a stand-alone analysis if required, this power analysis should relate to a single site”. Therefore 

protocols for power analysis and statistical analysis of a single field trial have been developed in this 

task.  

 

We investigated the applicability of linear models (LM) based on normal distributions for transformed 

variables relative to generalized linear models (GLM) for typical ERA data. This subtask involves 

robustness studies, e.g. simulating counts according to a range of distributions and analysing the 

resulting data using a range of analysis methods.  

The report describes the development of protocols for setting sample sizes in experimental design 

based on the desired performance of difference and equivalence tests. 

 

The experimental design protocol includes a checklist which enables a risk assessor to provide full 

information on the study, for example a list of endpoints and why they are chosen, a description of the 

chosen experimental design with justification in terms of power, and the sampling strategy.  

The statistical analysis protocol is summarised in a flow chart. This includes justification of the 

distributional assumptions and the robustness of such assumptions, the generic form of the analysis 

and why it was chosen, criteria for identification of outliers, the way in which difference and 

equivalence testing is performed, and the way in which the results of the analysis should be presented.  

In the further development the protocol will be accompanied by software for performing power 

analysis, for fitting the statistical models and for reporting and displaying the results of the analysis. 

 

1.3 Models simulating field trial data 

In Goedhart et al. (2013) four statistical models have been described for simulation of count data: 

Poisson (P), Over-dispersed Poisson (OP), Negative Binomial (NB), and Poisson-Lognormal (PL). In 

addition, in this report we also include the Taylor power law model, which has been found to provide 

adequate descriptions of practical data, with powers often between 1 and 2 (Taylor et al. 1978). The 

power law only specifies a relation between variance and mean (V = aµ
p
), therefore in the simulations 

a negative binomial distribution was used to generate data.  

For simulation of presence/absence data Goedhart et al. (2013) described three statistical models: 

Binomial (B), Beta-Binomial (BB) and Binomial-Logitnormal (BL).  
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1.4 Statistical analysis methods 

For statistical analysis of data many methods are available. A first possibility is a maximum likelihood 

analysis corresponding to exactly the simulation model. But it is often convenient to use simple 

approximation methods,  e.g.  

 a normal-distribution analysis of transformed data (e.g. log- or square root transform for non-

negative or count data, empirical logit transform for presence/absence data), 

 a quasi-likelihood analysis to address over-dispersion,  

 an analysis based on a two-part (hurdle) model rather than a mixture distribution. 

 an analysis of presence/absence derived from count data (all counts  > 0 are reset to 1)  

Several method were investigated in a simulation study (see companion report D9.2b and the summary 

of conclusions in Section 2 of this report). In the protocol of the current report the focus is on two 

categories of analysis: 

1. linear models (assuming a normal distribution of errors) after an appropriate transformation of 

the data; 

2. generalized linear models (GLMs), which specify transformations for the expected values 

rather than the data (McCullagh and Nelder, 1989). 

1.5 Power analysis for difference and equivalence testing 

The parameter of interest in tests is the ratio Q between expected counts for the GMO and the 

comparator (CMP), or equivalently, the difference D between the log-counts. For a power analysis of 

the difference test a range of alternative values for D has to be specified. 

In an equivalence test the null hypothesis is Q = LoC. For a power analysis of the equivalence test a 

range of alternative values for Q has to be specified, between 1 and LoC (if LoC>1), between LoC and 

1 (if LoC<1), or between a lowe LoC and an upper LoC (if there are concerns in both directions).  

For a non-equivalence test the null hypothesis is also D = LoC. But now the alternative values for Q 

are those above the LoC (if LoC>1), below the LoC (if LoC<1), or both (if there are concerns in both 

directions). 
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2 Summary of conclusions from a simulation study with count data 
 

The simulation study is fully described in the companion report on Deliverable 9.2b. here we present a 

short summary of the setup and conclusions.  

2.1 Setup of study 

Different models were used for simulating count data, and different methods for analysing the 

generated data. Almost all datasets show overdispersion in practice, therefore only models allowing 

for overdispersion were used in the simulation study. The Poisson model itself was not used. 

Table 1. Models and transformations used in simulating and analysing count data 

Abbreviation Description used for 

simulation 

used for 

analysis 

OP overdispersed Poisson x x 

NB negative binomial x x 

PL Poisson-Lognormal x  

P1 Power model with p=1.5 x x 

P2  Power model with p=1.7  x 

P3 Power model with p=1.99  x 

GM Gamma  x 

LN Log(y+1) transformation  x 

SQ Sqrt(y) transformation  x 

 

The parameters used in the simulation were varied across a range of means and CV values, as 

described in the simulation report D9.2b.  Data for GMO and comparator counts were simulated under 

effect sizes (ratios GMO to comparator) 1, 0.75, 0.5 and 0.25, thus focussing on negative effects of the 

GMO. 

Sizes and powers of tests were calculated by repeated simulation of data. In addition, estimation of 

sizes and powers with the method of Lyles et al. (2007) which does not need the repeated simulation 

was investigated. 

2.2 Results for the Difference test 

The main results from the simulation study for the difference test  were: 

1. Comparison of size of difference test for OP, P1 and GM when the LR test statistics is scaled by 

Pearson’s Chi-squared or by the mean deviance 

 scaling by Pearson has somewhat better properties 

2. Comparison of size of test for LN, SQ, OP, NB, P1, P2, GM 

 LN has generally the best properties 

3. Power of test for LN, SQ, NB, P1, P2, GM for those settings for which the size is OK 

 LN has the same power as OP when simulating according to OP 

 LN has marginally smaller power than NB in some case when simulating according to NB; 

however size of NB is frequently not satisfactory 

 LN is at least as good as other models when simulating according to PL 

 LN is at least as good as other models when simulating according to P1 

 LN is the method of choice for difference testing 
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4. Properties of the (back-transformed) generalized confidence interval, i.e. coverage probabilities, 

for the LN analysis are identical to those of the t-test. However this is only true for properties 

under the null-hypothesis of equal means. Coverage of the LN interval deteriorates when the 

quotient of the two means differs more strongly from one, and when the CV increases 

 The LN interval approach can be used for difference testing; apparently it cannot always 

be used for equivalence testing 

5. The method of Lyles et al (2007), using a synthetic dataset, can be used to perform a prospective 

power analysis for the LN analysis; this is in very good agreement with the simulated power 

 There is no need to perform a simulation study for a prospective power analysis in the 

simple situation of a GMO and a comparator. 

2.3 Results for the Equivalence testing 

The main results from the simulation study for the equivalence tests  were: 

6. Results are based on the estimate of the log(ratio) and its standard error (scaled by Pearson) for 

GLM-like analysis methods,  and on the Generalized CI for the LN and SQ analyses.  

7. Comparison of size of one-sided equivalence test for LN, SQ, OP, NB, P1, P2, GM for effect 

sizes 0.75, 0.5 and 0.25. The null-hypothesis is then H0: mu1/mu2 ≤ effectsize  

 Size of LN is generally bad (conservative as well as progressive) 

 Size of OP seems to be best across the board. However conservative for small means, small 

levels of replications and large CV values. Occasionally somewhat progressive. 

8. For effect sizes 0, 0.75 and 0.5, and hypothetical one-sided LOC of 0.5 he power of EQ test is 

very similar for OP, NB, P1, P2 and GM. Also the probability of “Equivalent more likely than 

not” is very similar. 

9. For effect size 0.50 one would expect a probability of 50% for “Equivalent more likely than not”. 

This is generally the case, except for small means combined with small levels of replication. 

 An OP based confidence interval can best be used for equivalence testing. This interval 

does not always have the correct size. 

10. The method of Lyles et al (2007) can also be used to approximate the power of the one-sided 

equivalence test using OP. The approximation is less good than for the difference test; it is 

however good enough as a first approximation especially for larger power values around 0.8. The 

approximation is not good for data simulated with PL and large CVs possibly because the PL 

distribution is then very un-similar to the overdispersed Poisson with the same CV. 

 There is not always a need to perform a simulation study for a prospective power 

analysis in the simple situation of a GMO and a comparator. 

2.4 Conclusion from simulation study 

Difference testing for count data can best be done by an LN analysis; based on this analysis a 

generalized CI can be constructed on the original scale. The method of Lyles et al (2007) can be used 

to approximate the power of this test. 

Equivalence testing for count data can best be done by constructing a CI after an OP analysis. This 

procedure does not have perfect properties. When simulating according to OP, NB or P1 (all using 

different variants of the negative binomial distribution) the method of Lyles et al. can be used to 

approximate the power of the one-sided equivalence test. 
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3 Statistical elements for a protocol for experimental design and 

prospective power analysis 
 

Attention is required before a field trial is performed to ensure that the experiment will be meaningful 

to answer research questions. We present relevant points from a statistical viewpoint as a checklist. 

Checklist 

1. Describe all the questions the experiment is meant to answer, in words. 

2. Prepare the list of endpoints. This may be divided into a list of primary endpoints (with strict 

requirements regarding power of tests) and a list of secondary endpoints. 

3. For each endpoint classify the measurement type, e.g. non-negative continuous data, count 

data or fractions (percentage) data. 

4. For each primary endpoint to be tested formulate the Limits of Concern (LOCs). For each 

endpoint one lower and/or one upper LOCs can be set. For non-negative continuous and count 

data these will typically be ratios of GMO divided by CMP true values. For percentage data … 

Make explicit whether equivalence has to be proven (in a formal test at the set significance 

level) or that it is sufficient to show ‘equivalence more likely than not’.  

5. Describe the research questions in the form of null hypotheses, both for difference and 

equivalence tests.  

6. Set the significance levels (α) for statistical testing. Conventionally the level (size) will be e.g. 

0.05. In the TOST approach to equivalence testing (Schuirmann 1987) the significance level 

for the difference test is twice the significance level for the equivalence test.   

7. Set the required power of the tests to detect differences at specified effect sizes. Typically 

these effect sizes will be equal to the LoC. Conventional values for power are between 70 and 

90%. If equivalence has to be proven, formulate effect sizes for which equivalence would 

need to be proven using the equivalence test with pre-defined power (e.g. 80% power to proof 

equivalence at an effect size of 0.75 (-25%) given an LoC of 0.5 (-50%).  

8. Describe the structure of the proposed experimental design, e.g. completely randomized, 

randomized block, split-plot , incomplete balanced block. 

9. Describe the experimental units (typically plots or sub-plots), and give details of the 

blocking structure (e.g. 4 main plots per randomized block, each split into 3 sub-plots) and 

the treatment structure (e.g. three types of spraying and four crop varieties). Also describe if 

interactions should be included. 

10. Describe whether repeated measurements will be taken from the same experimental unit. 

11. Provide a model formula partly specifying how the data will be analysed, using the syntax of 

one of the common software tools for statistical analysis (SAS, GenStat, R, …), for example 

block/plot/subplot + treatment + variety. Include terms and a correlation structure for repeated 

measurements if used. Indicate which factors are random rather than fixed. 

12. For each primary endpoint provide prior estimates of central value and variation for a 

measurement on one experimental unit. For non-negative continuous and count data the prior 

estimates for central values will typically be expected values or geometric means, and the 

prior estimates for variation will typically be coefficients of variation. Such values can be 

derived from previous experiments or based on expert knowledge. 

13. For each endpoint specify the simplest statistical analysis method that will be used (unless 

there are unexpected deviations in the execution of the field study or unexpected data). See the 

statistical analysis protocol for details. 

14. Based on the replication and the prior estimates estimate the power of the proposed design 

as a function of replication, for the difference test, and if needed also for the equivalence 

test. In simple cases this can be performed using analytical formulae, in more complex cases 

this can be found in published results of simulation studies such as performed in the AMIGA 

project. If not available, a new simulation can be performed to estimate the power. 



12 

 

15. From the power curves derive the replication of the comparison of GMO to CMP in the 

proposed design. 

16. If the calculated minimal replication cannot be realized in practice, the power is insufficient. 

In such case adapt the design or reformulate the research questions. 

17. Randomise the treatments over the experimental units taking proper account of the design. 
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4 Protocol for statistical analysis 

1. The method of statistical analysis depends on the type of endpoint.  For typical ecological 

endpoints it is recommended to perform both an analysis based on data transformation and 

normality, and an analysis on the original scale using an appropriate link function. 

 

Table 2. Recommended data transformations and GLMs 

Endpoint type data transformation1 distribution and link function for GLM 

Positive continuous x log(x) gamma, log 

Non-negative continuous x log(x+m), where m ≤ min(x+) gamma, log 

Positive counts x log(x) over-dispersed Poisson, log 

Counts x log(x+1) over-dispersed Poisson, log 

Fractions 0 < x/n < 1 logit(x) = log[(x)/(n-x)] over-dispersed binomial, logit 

Fractions x/n log[(x+0.5)/(n-x+0.5)] over-dispersed binomial, logit 
1
 For data transformation any base of logarithm can be chosen as is considered convenient, e.g. 2, e or 

10. Note that the GLM link functions will use the natural logarithm (loge). 

 

2. Analyse the transformed data by linear models: ANOVA if the design is balanced, or by a 

mixed model (REML) if they are not. 

3. Analyse the untransformed data by generalized linear models (GLM), or by a generalized 

linear mixed models (GLMM) is there are additional stochastic terms in the model. Allow for 

over-dispersion in counts and fractions. 

4. Check the reasonableness of statistical assumptions, e.g. as follows: 

a. Outliers: check data points with large standardised residuals. Compare analyses with 

and without such data points in a sensitivity analysis. 

b. QQ plot should show approximately a straight line 

c. Plot residuals vs. fitted values can be used to check if there is heteroscedasticity.  

5. If statistical assumptions are unreasonable, then an ad-hoc strategy will have to be followed. 

For example, non-parametric tests may be used. This protocol continues assuming that the 

model fits sufficiently well. 

6. From the ANOVA or REML results find estimators of the mean and standard errors of the 

mean for GMO and CMP.  From these distributions back-transform to distributions for the 

means of GMO and CMP on the original scale (method, see D9.2b report).  

7. From these back-transformed distributions create a distribution of the ratio GMO vs. CMP, 

and from this find the generalized confidence limits as 2.5% and 97.5% points for two-sided 

difference tests, or as 5% and 95% points for two one-sided difference tests. (Note: for visual 

display it is recommended to calculate and display both limits, even if the test is one-sided.) 

8. From the GLMM or GLM analysis find the best estimator of the mean, and 5% and 95% 

confidence limits by a profile likelihood method (see D9.2b report). Back-transform the 

estimate and the limits by the inverse link function. (Note: for visual display it is 

recommended to calculate and display both limits, even if the test is one-sided.) 

9. For each endpoint, plot point estimates and intervals, together with lines for the equality ratio 

1, and the LoCs. In most cases plots on a logarithmic scale are advised. Use a recognizable 

symbol (e.g. an arrowhead) for interval endpoints that represent two one-sided tests (TOST). 

10. Use the intervals based on the linear models for the difference tests 

11. Use the intervals based on the generalized linear models for the equivalence tests. 
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Figure 1. Flow chart to guide statistical analysis (updated from Semenov et al. 2013). 
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5 Statistical analysis examples 
 

5.1 One- and two-sided difference and equivalence tests 
Here we show an example for a situation where there is a concern about decreased levels of a counted 

organism. We assume that the Limit of Concern has been set to 0.5 for three endpoints, i.e. there is 

ecological concern if the count level in the GMO plots would be 50% or less of the level in the CMP 

plots. There is no concern about increased levels. We assume a testing confidence level of 95% 

throughout. 

Results were obtained from programs in GenStat (VSN 2012). In Figure 2 we show data and results 

for three endpoints, each with 2 x 20 counts (10 for CMP and 10 for GMO). In the joint graph the 

intervals for difference testing and for equivalence testing are shown together for each endpoint. Note 

that both intervals have arrowheads indicated that they represent two one-sided tests (TOST). This 

simply means that these intervals are intended to cover 90% (rather than 95%), with 5% probability of 

a true ratio below the lower endpoint and 5% probability of a true ratio above the upper endpoint. 

For the one-sided difference test the upper limit can be compared to the ratio value 1 (which represents 

the null hypothesis of equality). In this example the GMO is not significantly different from the CMP  

for endpoint A, but it is for endpoints B and C. The P values for the one-sided difference test are 

indicated next to the relevant interval upper limit in the graph. 

For the one-sided equivalence test the lower limit can be compared to the ratio value 0.5 (which 

represents the null hypothesis of border-line non-equivalence). In this example the GMO is equivalent 

to the CMP  for endpoints A and B, but it is non-equivalent more likely than not for endpoint C. The P 

values for the one-sided equivalence test are indicated next to the relevant interval lower limit in the 

graph for endpoints A and B.  For endpoint C the point estimate is already lower than the LOC, 

therefore the result of a non-equivalence test is shown. In this case the non-equivalence is not 

significant, hence the resulting classification as ‘non-equivalence more likely than not’. 

It can be observed that in this case the two types of interval are reasonably similar, and the same 

conclusions would have been obtained if only one type of interval had been used for both the 

difference and the equivalence tests. 

In Figure 3 the same data are analysed under a setting of two-sided concern. For the chosen examples 

the observed ratios are 1 or less, so there is no indication from the data for an increase. The difference 

intervals now are 95% rather than 90% intervals (and therefore slightly wider), and the P value for the 

difference test is approximately double the one-sided P value for these endpoints. This is the normal 

difference between on- and two-sided testing. Note, however, that the equivalence and non-

equivalence tests are not influenced (the additional tests w.r.t. the upper LOC are performed, but are 

irrelevant for these data). 
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A 
 

B 
 

C 
 CMP GMO CMP GMO CMP GMO 

64 20 66 20 66 12 
18 16 21 16 21 8 
23 38 30 38 30 23 
14 8 21 8 21 10 
22 5 29 5 29 15 
14 17 21 17 21 1 
64 12 71 12 71 7 
17 21 24 21 24 24 
17 30 24 30 24 11 
44 13 51 13 51 15 
27 24 34 24 34 9 
12 24 19 24 19 8 

3 33 10 33 10 7 
10 27 17 27 17 32 

6 21 13 21 13 28 
7 27 14 27 14 12 

18 15 25 15 25 11 
23 51 30 51 30 27 
59 13 66 13 66 7 
41 21 48 21 48 18 

 

 

Figure 2. Three examples of count data (n=20) where there is concern for a decreased level. Limit of Concern 

(LOC) is 0.5 (GMO 50% of CMP, red vertical line). Bi-directed arrows represent 95% confidence intervals 

corresponding with two one-sided tests (TOST). P values are shown near the arrowheads for the one-sided 

difference (D) test (black) and the one-sided equivalence (E) or non-equivalence (NE) test (red) that is relevant 

for LOC<1.  

(A) Not significantly decreased and equivalent;  

(B) Significantly decreased and equivalent;  

(C) Significantly decreased and non-equivalence more likely than not. 

 

 

Figure 3. Same example as in Figure 2, but now with 

concern for decrease and increase, and two Limits of 

Concern, at ratios 0.5 and 2. Bars at the end of the difference 

interval indicate that this is a two-sided interval. The 

equivalence TOST interval is unchanged. 

 

 

 

 

 

 

 

 

 

 

 



17 

 

5.2 Difference and equivalence tests on a preliminary AMIGA potato data 
Counts of non-target organisms were made in a field experiment with three potato varieties, 

performed in 2013 in Valthermond, the Netherlands, as part of the AMIGA project. 

Preliminary data (see Table 3)  for two of the varieties (a GMO and a comparator) were 

analysed by the statistical methods proposed in this report. 

 

Table 3.  AMIGA potato experiment Valthermond, July 2013. Counts per guild, preliminary data 

(data courtesy Jenny Lazebnik, Wageningen University). 

block variety treatment Predators Detrivores Parasitoids Fungivores Herbivores 
6 CMP IPM 14 3 5 0 18 
3 CMP IPM 12 10 10 1 23 
2 CMP IPM 19 6 8 0 28 
5 CMP IPM 20 9 7 0 16 
7 CMP IPM 17 6 2 0 21 
1 CMP IPM 16 6 6 0 17 
4 CMP IPM 8 5 1 0 11 
6 CMP NoControl 6 4 4 0 25 
5 CMP NoControl 20 7 4 1 12 
1 CMP NoControl 33 12 8 1 43 
4 CMP NoControl 15 4 9 1 19 
3 CMP NoControl 13 7 4 0 13 
7 CMP NoControl 6 2 0 1 12 
2 CMP NoControl 21 13 13 0 13 
4 CMP WeeklySchedule 23 12 6 0 22 
1 CMP WeeklySchedule 36 6 8 0 35 
6 CMP WeeklySchedule 18 4 4 0 25 
3 CMP WeeklySchedule 15 7 3 0 17 
2 CMP WeeklySchedule 15 6 6 0 27 
7 CMP WeeklySchedule 25 13 10 1 17 
5 CMP WeeklySchedule 17 9 5 0 28 
5 GMO IPM 19 2 4 1 17 
4 GMO IPM 19 7 6 0 20 
3 GMO IPM 25 8 8 0 29 
7 GMO IPM 12 8 9 0 19 
2 GMO IPM 20 6 11 3 12 
6 GMO IPM 17 6 7 1 16 
1 GMO IPM 10 10 7 0 33 
5 GMO NoControl 8 6 6 0 27 
2 GMO NoControl 13 5 8 0 26 
1 GMO NoControl 15 9 5 1 24 
7 GMO NoControl 11 4 1 0 10 
6 GMO NoControl 8 8 4 0 11 
4 GMO NoControl 15 7 3 0 34 
3 GMO NoControl 11 9 7 0 22 
3 GMO WeeklySchedule 12 13 9 1 39 
1 GMO WeeklySchedule 19 12 11 1 34 
6 GMO WeeklySchedule 11 7 1 1 20 
5 GMO WeeklySchedule 13 5 1 0 16 
4 GMO WeeklySchedule 15 8 7 0 23 
7 GMO WeeklySchedule 13 6 6 0 18 
2 GMO WeeklySchedule 18 9 10 0 23 
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The results are shown in Figure 4.  No prior discussion was made on appropriate Limits of 

Concern, and these were set at 0.5 and 2 for illustration of the method. Two-sided difference 

tests were performed. 

No significant differences were found between the GMO and the CMP. For four of the five 

guilds equivalence could be proven at the 95% confidence level. For the Fungivores guild the 

observed numbers were very low (see Table 3). Consequently interval are wider.  Equivalence 

could not be proven, but is still more likely than not.  Note that the P value is shown for the 

equivalence test w.r.t. the nearest LoC, i.e. LoC=0.5 for  endpoint A (Predators), and LoC=2 

for the other endpoints. 

 

Regarding the methodology, the two intervals are more similar when the observed counts are 

higher (endpoints A and E) than when they are low (e.g. endpoint D). 

 
Figure 4. Analysis count data sticky traps per guild. AMIGA potato experiment Valthermond, July 2013. (A) 

Predators, (B) Detrivores, (C) Parasitoids, (D) Fungivores, (E) Herbivores. Limits of Concern set to 0.5 and 2 for 

illustration of the method only. 
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1 Introduction 

1.1 Statistical analysis and design for environmental risk assessment 

A basic statistical approach to environmental risk assessment (ERA) has been outlined in the 

EFSA Guidance Document (EFSA, 2010b) and in Perry et al. (2009). However, this approach 

is not specified in great detail. The aim of the statistics work package is to make the EFSA 

guidelines workable, practical and to fill in the gaps. This will result in a protocol which will 

provide risk assessors with a step-by-step approach for both design and statistical analysis of 

field trials. Statistical consideration of the EFSA for the safety evaluation of genetically 

modified organisms (EFSA, 2010a) will be incorporated in this protocol. Work package 9 will 

develop statistical concepts, methods, software and protocols for environmental risk 

assessment (ERA) and post-market environmental monitoring (PMEM). Main objectives are: 

 to develop appropriate statistical methods to handle Genotype by Environment 

interaction in studies over multiple bio-geographic regions and under varying 

agronomical conditions. This is expected to be a major issue in the context of 

European ERA; 

 to introduce equivalence testing as a main approach for ERA in addition to difference 

testing, and to establish protocols for experimental design based on acceptable test 

characteristics; 

 to develop statistical approaches for handling data sets with many low counts and 

presence/absence data, as often encountered in ERA. Current practice is to use models 

based on normal distributions but this may not be appropriate; 

 to implement methods in software for practical use; 

 to provide protocols and draft texts for guidelines. The protocol will provide risk 

assessors with a set of evaluated, standardized and harmonized sampling and testing 

methods for environmental risk assessment; 

 to provide guidelines for multivariate statistical approaches appropriate for PMEM. 

 

Existing datasets will be studied to characterise baseline conditions found in different bio-

geographic regions, and to typify the variation of genotypes and environments (Task 9.1). 

Based on these results a simulation model will be built (Task 9.2), which will be used to test 

various statistical approaches for data analysis in relation to the possible design of 

experiments (e.g. sample size). Statistical approaches will use both difference and equivalence 

testing, and a graphical display of assessment results will be developed (Task 9.3). Also for 

multi-environment studies appropriate statistical methodology will be developed, including 

the consideration of genotype by environment interaction (Task 9.4). The statistical methods 

for analysis and design of field trials for Environmental Risk Assessment that give the best 

performance will be described in protocols for both single-environment (Task 9.3) and multi-

environment studies (Task 9.6). 

Tasks 9.1 (overview of existing ERA datasets) and 9.2 (simulation model for ERA data) are 

described in Goedhart et al (2013, 2014). This report describes results of a simulation study to 

investigate properties of various statistical models, which are used to perform difference and 

equivalence testing, for analysing count data. 
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1.2 A protocol for the design and analysis of single-environment field 

trials – Task 9.3.  

This task is preparatory for Tasks 9.4 and 9.5 where multi-environment trials are addressed. 

Several statistical issues regarding data types, difference testing, equivalence testing and test 

characteristics can however be better researched in the relatively simple situation of a single-

environment trial. This is also relevant because of the emphasis of the EFSA guidance 

document on single-environment trials. The EFSA guidance document states that “For field 

trials, since each field trial at a site on a particular occasion should have sufficient replication 

to be able to yield a stand-alone analysis if required, this power analysis should relate to a 

single site”. Therefore protocols for power analysis and statistical analysis of a single field 

trial will be developed in this task. To develop such protocols it is important to known the 

statistical properties of various tests which are used in practice, for example the power and 

robustness of a test and whether the test has the correct significance level. This can best be 

researched by means of a simulation model. This reports describes such a simulation study. 

1.3 Overview of this report 

The simulation model developed in Task 9.2 was used to generate count data for the simple, 

but important, situation in which a field study is conducted to compare a GM plant with its 

conventional counterpart . It is assumed that a completely randomized experiment is used and 

that a single count, without excess zeros, of a non-target organism is available for each 

experimental unit. Chapter 2 describes the setup of the simulation study.  Four different count 

distributions were used to simulate count data for a mean count ranging from 0.5 (for rare 

species) to 100 (for more common species). Different coefficients of variation and different 

levels of replication, ranging from 4 to 100, were used to simulate data. The ratio of the 

means of the GM plant and its comparator was set to 1, 0.75, 0.50 and 0.25. A ratio of 1 

implies no difference between the GM plant and its comparator. The simulated data were 

analysed by means of eight different models, such that the most robust model could be 

selected. Chapter 3 describes the results obtained for difference testing; this includes the 

simulated size and power of the difference test as well as coverage of confidence intervals. It 

also compares an approximate fast method to obtain the power of a difference test. Finally a 

recommendation is given about which difference test is to be preferred. Chapter 4 deals with 

one-sided equivalence testing and describes the simulated significance level of various 

methods, the simulated power and a fast way of calculating the power. This also results in a 

recommendation about which equivalence test is to be preferred. Chapter 5 shortly deals with 

the problem of zero inflation, i.e. more zeros than predicted by the count distribution 
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2 Setup of simulation study 

2.1 Basic setup and simulation distributions 

The most simple trial in which a GM plant is compared to its conventional counterpart is a 

completely randomized field trial with level of replication  . In that simple case there are 

only two parameters: the mean count of the non-target organism for the GM plant (  ) and the 

mean count (  ) for the comparator. In practice there might be repeated counts on the same 

plots, but this is ignored in this simulation study. Goedhart et al (2013, 2014) describe five 

statistical distributions commonly used to simulate counts: the Poisson distribution, the 

overdispersed Poisson distribution, the negative binomial distribution, the Poisson-Lognormal 

distribution and a distribution which follows Taylor’s power law. The Poisson distribution 

was not used in this simulation study because it is generally believed (Perry et al 2003, Duan 

et al, 2006) that counts of non-target organisms (NTOs) typically have larger variance than 

according to the Poisson distribution. Table 4 summarizes the four distributions which are 

used to simulate data, with the dispersion parameter    as a function of the mean   and the 

variation coefficient    in the last column. There is no statistical distribution associated with 

Taylor’s power law, as it only specifies a relationship between the variance and the mean. 

Perry et al (2003) used the negative binomial distribution to simulate according to Taylor’s 

power law employing a negative binomial dispersion parameter which follows from equating 

the variance of the negative binomial to the power law. The same approach is followed here. 

Using the negative binomial is however somewhat arbitrary, as e.g. the Poisson-Lognormal 

has the same variance to mean relationship, but has a different distribution.  

Table 4:  Distributions and values for the dispersion parameter used to simulate data. 

Distribution Abbreviation Mean Variance Dispersion parameter 

   as a function of    

Overdispersed Poisson OP         (     ⁄ )  

Negative Binomial NB          (     ⁄ )    ⁄  

Poisson-Lognormal PL          (     ⁄ )    ⁄  

Power model ( =1.5) P1               (     ⁄ )  

 

The variance function of the Power model is more generally given by          in which   

is some power. In this simulation study  =1.5 was chosen because this results in a variance 

function nicely in between the variance function for the overdispersed Poisson on the one 

hand and the negative binomial and Poisson-Lognormal on the other hand.  

The assumed variability in field testing of NTOs is mostly defined in terms of the coefficient 

of variation (  ), for example Duan et al (2006), and this convention is also used here. The 

mean    of the comparator and the coefficient of variation    define the dispersion parameter 

  , see Table 4. This same dispersion parameter is then used to generate counts for the 

comparator and also for the GM plant. So for example with   =10 and   =100%, the 

negative binomial dispersion parameter equals   =0.9. In case the GM plant, in the same 

simulation, has a mean   =2.5, the corresponding    value equals √               ⁄  = 

114%. Moreover, a mean   =1 has a corresponding   =138% in this setting. This somewhat 
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higher    value than for the comparator reflects the general believe that smaller means are 

associated with larger    values. The quotient of the    value for the GM plant and the 

comparator for each distribution is given below as a function of       ⁄ . 

Overdispersed Poisson simulation distribution  

The overdispersed Poisson distribution requires a dispersion parameter    which is larger 

than or equal to 1, where the limiting value of 1 results in an ordinary Poisson distribution. 

The quotient of the variation coefficients is given by 

   
   

 √
    ⁄

    ⁄
 √

  
  
 √

 

 
 

This implies that with   = 0.25 the GM plant has a    value which is twice as large as the    

of the comparator, irrespective of the value of   . 

Negative binomial and Poisson-Lognormal simulation distributions 

The negative binomial and Poisson-Lognormal distributions both require a dispersion 

parameter    which is larger than 0. The quotient of the variation coefficients is given by a 

more complicated formula: 

   
   

 √
(       

 )   
 ⁄

(       
 )   

 ⁄
 √  

   

     (     ⁄ ) 
 

 This will be close to 1 for large    values and for large values of   . 

Power law simulation distribution  

For simulating according to the Power model, first the following equation is solved for  : 

          ; subsequently data are simulated according to a negative binomial 

distribution with  dispersion parameter  . Note that the equation is separately solved for the 

comparator, with mean   , and for the GMO with mean       . This might results in a 

combination of parameter values which is not allowed. Suppose, as an example,   =9,   =1 

and   =50%. The dispersion parameter of the Power model with  =1.5 is then given by 

  =0.75. However the equation for   : 1+ 12
 = 0.75*1

1.5
 cannot be solved for positive  . 

The quotient of the coefficients of variation is given by 

   
   

 √
    

   
 ⁄

    
   

 ⁄
         

This implies that with   = 0.25 and  =1.5 the GM plant has a    value which is √  as large 

as the    of the comparator.  
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2.2 Parameter values used in the simulation 

Depending on the NTO at hand, mean counts can be very small but can also be quite large. 

A range of 0.5 to 100 for the mean    of the comparator is therefore employed.  

Rather than focusing on the difference between    and   , it is more natural to focus on the 

ratio       ⁄  of the two means. Generally accepted values in field testing for   are 

between 0.5 and 0.25 (Comas et al, 2012). We used values 1, 0.75, 0.5 and 0.25. The value 

of 1, i.e. no difference between the comparator and the GM plant, is specifically meant to 

examine whether the difference test attains its nominal  -level.The other values of   assume 

that the GM plant has a negative effect on the mean count. 

The assumed variability in field testing of NTOs is mostly defined in terms of the coefficient 

of variation (  ). Duan et al (2006) present graphs with    values ranging from 25% to 

200% with generally low    values for means larger than 5 and    values up to 200% for 

means close to zero. In this study, five different values of    are used for different values of 

   as given in Figure 5 and Table 5. Compared to Duan et al (2006) the larger    values used 

in this simulation study seem to be at the upper end of what can be expected in practical field 

trials. 

Figure 5: Combinations of comparator means    and coefficients of variation   . The solid 

line denotes the coefficient of variation of a Poisson distribution.  

 

Finally the level of replication   must be specified. Environmental risk assessment of GM 

plants is typically performed in experiments with a small number of plots. This is (partly) due 

to the fact that relatively large plots and large guard rows are required in order to measure 

effects on NTOs without bias, see Perry et al (2003). It is therefore that such experiments are 

frequently repeated in different years and different locations such that larger levels of 
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replication are obtained. A range of 4 to 100 for the level of replication   is employed in this 

study with some emphasis on lower values. 

Table 5 summarizes the parameter values which are used in the simulation study. These 

values result in 1600 parameter combinations. For each combination of the simulation 

distribution (OP, NB, PL and P1) and parameter values 1000 datasets were simulated. Each 

dataset was analysed using the models given in the next session and an appropriate difference 

test at the 5% level was performed (details are given below). The proportion of datasets for 

which the difference test is rejected then gives an estimate of the true significance level ( ) of 

the test when there is no difference, i.e.  =1, and the power ( ) of the test when there is a 

difference, i.e.  ≠1. These are only estimates of the true size of the test. Suppose that the size 

of the test is indeed exactly 5%, then with 1000 simulations a 99% prediction interval for the 

number of times the null hypothesis will be rejected is given by (33, 67) resulting in an 

interval of 3.3% – 6.7% for the true size. So only when the simulated significance level is 

outside this interval there is an indication that the true level of the test does not equal 5%. 

Table 5:  Parameters used in the simulation study. 

Parameter Values used in simulation 

Mean    of comparator 0.5,  1,  2,  5,  10,  20,  50,  100 

Ratio       ⁄  1,  0.75,  0.5,  0.25 

Number of replication   4,  6,  8,  10,  15,  20,  30,  40,  60,  100 

    
Coefficient of variation    for comparator 

  -1   -2   -3   -4   -5 

0.5 150 200 300 400 500 

1 150 200 300 400 500 

2 100 150 200 300 400 

5 75 100 150 200 300 

10 50 75 100 150 200 

20 40 50 75 100 150 

50 20 30 40 50 75 

 00 15 20 30 40 50 

 

Data were simulated using the statistical package GenStat (VSN international, 2013). 

2.3 Statistical models for analysis 

Fitting the Poisson-Lognormal model by means of maximum likelihood requires (adaptive) 

Gauss-Hermite integration within an iterative weighted least squares algorithm. This 

algorithm turned out to fail too frequently for data with small means, small levels of 

replication and/or small coefficients of variation. Therefor the Poisson-Lognormal model was 

not used to analyse simulated data. The other models with which each dataset was analysed 

are summarized in Table 6. All models were fitted using standard facilities in the statistical 

package GenStat (VSN international, 2013). Details for each analysis model are given below. 

A difference test for all models can be obtained by comparison of the fit of the model, more 
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specifically the deviance,  under the null-hypothesis         and the fit of the model under 

the alternative hypothesis        .  

Table 6:  Statistical models used to analyse the simulated data. 

Analysis model Abbreviation Type of difference test 

Log transformation  LN t-test 

Squared-root transformation  SQ t-test 

Overdispersed-Poisson OP scaled deviance difference 

Negative binomial NB deviance difference 

Power model  =1.5 P1 scaled deviance difference 

Power model  =1.7 P2 scaled deviance difference 

Power model  =1.99 P3 scaled deviance difference 

Gamma model GM scaled deviance difference 

LN: Log transformation followed by a t-test 

The count data are log-transformed after the addition of 1 to prevent taking the logarithm of 

zero. The simple two-sample t-test is then applied to the log transformed counts. The log 

transformation stabilizes the variance for distributions with a standard deviation which is 

proportional to the mean, or    ( )    . This transformation therefore seems appropriate 

for the negative binomial and the Poisson-lognormal distribution with means that are not too 

small. 

The two-sample t-test employs an estimate of the difference between the GM plant and the 

comparator on the transformed logarithmic scale. This difference is however a quantity that is 

not easy to interpret, especially when the underlying means    and    are small. Instead 

interest is in the ratio       ⁄ . The so-called generalized confidence interval approach can 

be applied to provide an interval for the ratio of two lognormal means, see Krishnamoorthy & 

Mathew (2003) and Chen and Zou (2006). According to these authors such an interval has 

excellent coverage probabilities. This approach uses the fact that, assuming that the log-

transformed counts follow a normal distribution, the residual mean square follows a scaled 

Chi-squared distribution and that the two sample means follow a normal distribution which is 

independent of the Chi-squared distribution. A simulation approach is then used to generate a 

large sample for the ratio of the two lognormal means, accounting for the addition of 1. 

Percentiles of this large sample then define a confidence interval. More specifically, with    

and    the two sample means on the log-transformed scale,    the estimate of the variance on 

the transformed scale and 2 -2 the number of degrees of freedom for   , a large sample for 

the ratio   is generated in the following way 

1. A random draw     is generated by means of     = (2 -2)        ⁄  where       is 

a random draw from a Chi-squared distribution with 2 -2 degrees of freedom; 

2.     is a random draw from a normal distribution with mean    and variance     ⁄ ; 

3.     is a random draw from a normal distribution with mean    and variance     ⁄ ; 

4. Back-transform    by means of       (       ⁄ ) and similarly   . Note that 

the back-transformation uses the equation for the mean of the lognormal distribution; 
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5. Subtract 1 from    and   ; this accounts for the addition of 1 before log-transforming 

the count. This might sometimes result in a negative value for    or   . Such values 

are replaced by a small positive value, i.e. by 0.0001. 

6. Calculate the ratio     ⁄  

7. Repeat steps 1-6 many times, e.g. 10.000 or when more precise results need to be 

obtained 100.000 times. Calculate appropriate percentiles of the large sample which is 

the generalized confidence interval. 

The generalized confidence interval can be used for difference testing as well as for 

equivalence testing.  

SQ: Squared root transformation followed by a t -test 

The squared root transformation is frequently used as an alternative for the log transform, and 

a simple t-test is also performed on squared root transformed counts. This transformation 

stabilizes the variance when the variance is proportional to the mean, or    ( )   . This 

transformation is therefore especially appropriate for the overdispersed Poisson distribution.  

The generalized confidence interval approach can also be employed to obtain an interval for 

the ratio on the original scale. The only modification to the seven steps described for the LN 

analysis is the back-transformation in step 4. For the squared root transform this is given by 

     
      which employs the well-known relation    ( )      (  )  where   

denoted taking the expectation. Step 5 has to be skipped.  

OP: Overdispersed Poisson by a GLM-like analysis 

There does not seem to be standard software to fit the overdispersed Poisson distribution by 

means of maximum likelihood. However, a common way to analyse overdispersed counts is 

to use the quasi-likelihood approach of McCullagh and Nelder (1989). This amounts to fitting 

the ordinary log-linear model, which employs the Poisson distribution and a log-link, and to 

scale standard errors of parameter estimates by means of the squared root of an estimate of the 

dispersion parameter. This is the approach which is followed here. A scaled likelihood ratio 

statistic is obtained by calculating the scaled deviance difference of the model under    and 

  . Scaling can be done by the mean deviance or by Pearson’s Chi-squared statistic, both 

under   , and both methods are compared. The scaled likelihood ratio statistic is compared 

with a F distribution with 1 and 2 -2 degrees of freedom to obtain a p-value.  

In this model the underlying mean is log-transformed, rather than taking logs of the observed 

counts. This implies that the logarithm of the ratio of the two means, i.e.    ( ), is directly 

estimated in this model. A so-called Wald test statistic (Buse, 1982) can then be used for 

difference testing. This equals the quotient of the estimate of log( ) and its standard error, 

and this is usually compared to a t-distribution to compensate for the estimation of the 

dispersion parameter. However it is generally believed that the likelihood ratio statistic has 

better statistical properties (McCullagh and Nelder, 1989). Moreover the Wald statistics 

breaks down when either sample only contains zero’s since the estimate of    ( ), and its 

standard error, then becomes plus or minus infinity. So difference testing is based on the 

scaled likelihood ratio test. Equivalence testing under this model is however based on the 
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estimate of    ( ) and its standard error, scaled by Pearson’s statistic, which can be used to 

generate a confidence interval and thus to perform equivalence testing for arbitrary limits of 

concern. An alternative would have been to calculate a so-called profile likelihood interval 

but this requires a search algorithm which was considered to be too computer intensive in this 

simulation study.  

NB: Negative binomial model by a GLM-like analysis 

The negative binomial regression model, with logarithmic link, is fitted to the counts by 

means of maximum likelihood. The likelihood ratio test is calculated and compared to a 

Chi-squared(1) distribution. The dispersion parameter of the negative binomial distribution 

was bounded to the interval [0.001, 1000] to avoid numerical problems. 

The estimate of    ( ) and its standard error is used for equivalence testing. 

P1, P2 and P3: Power Law model by a GLM-like analysis 

The Power model is defined by a variance-to-mean relationship and there is no true statistical 

distribution associated with it. Therefore, like the overdispersed Poisson model, quasi 

likelihood is used to fit the model. The quasi deviance   can be obtained by employing its 

definition, see McCullagh & Nelder (1989): 
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For Taylors Power Law, i.e.    ( )    , the quasi deviance becomes 
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The model is fitted using GenStats facilities for generalized linear models with non-standard 

variance functions. The GenStat directives for defining the model are as follows, where 

‘response’ is the observed count, ‘power’ is the value of   in the variance function and ‘z1’, 

‘z2’ and ‘z3’ are the three terms between squared brackets in the equation above. 

CALCULATE b1,b2 = 1,2 - power 

EXPRESSIO dcalc[1] ; VALUE=!e(vfunction = mu**power) 

EXPRESSIO dcalc[2] ; VALUE=!e(z1 = response**b2/(b1*b2)) 

EXPRESSIO dcalc[3] ; VALUE=!e(z2 = response*mu**b1/b1) 

EXPRESSIO dcalc[4] ; VALUE=!e(z3 = mu**b2/b2) 

EXPRESSIO dcalc[5] ; VALUE=!e(deviance = 2*(z1-z2+z3)) 

MODEL     [DISTRIBUTION=calculated ; DCALCULATION=dcalc[] ; \ 

          LINK=log ; DMETHOD=pearson ; DISPERSION=*] response ; \ 

          FITTED=fitted ; VFUNCTION=vfunction ; DEVIANCE=deviance 



31 

 

To obtain a test-statistic the deviance difference can be scaled by the mean deviance or 

Pearson’s test statistic, both under   . The test statistic was compared to a F distribution with 

1 and   -2 degrees of freedom. The power model was fitted with a fixed power   of 1.5, of 

1.7 and of 1.99, and these are denoted by P1, P2 and P3 respectively. Note that a power  =2 

is not allowed by the model as this implies division by zero. 

A confidence interval is obtained for the estimate of    ( ) and its standard error, scaled by 

Pearson’s statistic and using a t-distribution, and this is used for equivalence testing.  

GM: Gamma model using a GLM-like analysis 

The final analysis is by means of the Gamma distribution employing a log-link. Since the 

gamma distribution cannot handle zero observations, zeroes were replaced by 0.001. Again 

the deviance difference was scaled by the mean deviance or Pearson’s chi-squared and 

compared with a F distribution with 1 and  -2 degrees of freedom to obtain a p-value. Also a 

confidence interval is obtained for the estimate of    ( ) and its standard error, scaled by 

Pearson’s statistic and using a t-distribution, and this is used for equivalence testing.  

Special cases 

For small means and small levels of replication sample means can easily become zero for a 

simulated dataset. When both sample means equal zero, or more generally when both 

variances within samples equal zero, the analysis according to the log-transformation cannot 

be performed because the residual mean square equals zero. Some decision has to be taken to 

deal with such situations. Consider therefore the case with 4 observations of the comparator 

and 4 observations for the GM plant, with obvious generalizations to more observations. The 

four cases below are then special. 

A. Sample 1 equals {0, 0, 0, 0} and sample 2 equals {0, 0, 0, 0}. In this case there is no 

information and the deviance under the null model and under the alternative model are 

both zero for all models. The p-value for the difference test is set to 1 for all analysis 

models as there is no indication of a difference between the two samples. For the most 

extreme parameter combination   =0.5,   =500,  =0.25,  =4 and the overdispersed 

Poisson distribution this situation occurs for 570 of the 1000 simulated datasets. For 

negative binomial, Poisson-LogNormal and Power models these numbers are 

respectively 511, 287 and 565. Clearly there is also no information for calculating a 

confidence interval and thus formal equivalence testing cannot be performed. 

Graphical results for equivalence testing present the proportion of these cases 

separately. Note that this case can be considered as “equivalent more likely than not”. 

B. Sample 1 equals {0, 0, 0, 0} and sample 2 equals {c, c, c, c} where c is some positive 

value. The deviance under the alternative model equals zero and so no test statistic can 

be calculated. However this situation is very rare. For the Poisson-LogNormal 

distribution there are 28 parameter combinations for which this situation occurs with a 

maximum of 5 out of 1000 such datasets at most. For the other distributions this 

situation occurs even less. These situations are therefore discarded, i.e. the 

corresponding p-value is set to missing.  
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C. Sample 1 equals {0, 0, 0, 0} and sample 2 has different values with a positive 

variance. In this case all the p-values can be calculated in the usual way. 

D. The mean of both samples are positive with a zero variance, e.g. {1, 1, 1, 1} and {3, 3, 

3, 3}. This is essentially the same as case B although it will occur even rarely. There 

are only 2 simulated datasets for which this occurs and these are discarded. 

3 Results for difference testing 

3.1 General remarks on difference testing 

A key element in environmental risk assessment it to test whether the GM plant is different 

from its conventional counterpart. The aim of a statistical difference test is to reject the null 

hypothesis of no difference between the GM plant and its comparator. A significant difference 

test is then a “proof of difference”, but this does not state that the difference is biologically 

relevant and constitutes a true hazard to the environment. Poorly designed experiments with 

low levels of replication may have low statistical power of finding a true difference. So the 

absence of a significant difference is not a proof that there is no difference, or “absence of 

evidence is not evidence of absence” (Altman and Bland, 1995). There are two possible types 

of errors for a difference test. A type I error occurs when the null hypothesis of no difference 

is falsely rejected when it is actually true. In that case the incorrect conclusion is drawn that 

the GM plant is different from its comparator. A type II error on the other hand occurs when 

the null hypothesis is not rejected although it is untrue. Typically the probability of a type I 

error, also known as the size of the test or  , is set to some pre-described small value such as 

5%, implying that in 5% of all tests the null hypothesis of no difference is falsely rejected. 

Given the size of the test, the probability of a type II error depends on the true difference, the 

level of variation and the level of replication. Note that the power of a test, frequently denoted 

by  , equals one minus the probability of a type II error. 

The size of tests based on the normal distribution, such as the t-test, is exact. However tests 

based on other distributions, like the Poisson and the negative binomial, depend on asymptotic 

(meaning large levels of replication) arguments and are therefore not exact. This implies that a 

test, which is supposed to have a size of say 5%, might in practice have a different size. When 

the actual size of the test is larger than   the test is said to be progressive, when it is smaller 

the test is said to be conservative. Progressive tests are considered to be specifically bad 

because the null hypothesis of no difference is falsely rejected more often than the pre-

described   level. Frequently the true underlying distribution of counts is not known. We 

might for instance falsely analyse data according to the Poisson distribution while in practice 

the data follow the negative binomial distribution or vice versa. This is particularly likely to 

happen when counts are small, as encountered frequently in ERA experiments, because then it 

is hard to discriminate between probability models. This ignorance about the true underlying 

distribution might result in difference tests to become even more progressive or conservative.  

The power of a difference test based on the normal distribution can be calculated exactly. For 

non-normal distributions, small sample properties of difference tests are not straightforward. 

A simulation approach for sample size calculations for a difference test is employed by many 

authors, e.g. Shieh (2001) and Hrdličková (2006) for the Poisson distribution, Shieh (2001) 
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and Demidenko (2008) for the binomial distribution, Aban et al (2009) and Friede and 

Schmidli (2010) for the negative binomial distribution. A general practical approach to 

computing power for non-normal distributions is given by Lyles et al (2007). 

In the remainder of this chapter simulation results of various properties of the difference tests 

are presented. All results presented are for a two-sided test of no difference with a 

significance level  =5%. Detailed results are given in a separate document with Appendices. 

3.2 Scaling of the deviance difference for OP, P1, P2, P3 and GM 

When data are analysed by means of the overdispersed Poisson, Power or Gamma model the 

likelihood ratio statistic can be scaled by means of the mean deviance or by means of 

Pearson’s chi-squared, both for the full model. The simulated significance level of these two 

variants of the test statistic for specific parameter combinations is given in Figure 6 and 

Figure 7 when data are simulated by means of the negative binomial distribution with 

coefficients of variation as given by   -1 and   -3, and in Figure 8 and Figure 9 when data 

are simulated by means of the Poisson-Lognormal distribution. Each small plot has a range of 

0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes the assumed 

 =0.05. The red lines denote values 0.033 and 0.067 which provide a range that could be 

expected when 1000 datasets are simulated. So simulated sizes within the red lines are OK 

and such values are denoted by open circles. Values outside this range are denoted by filled 

circles, while values larger than 0.096 are given by triangles. Results for all parameter 

combinations are given in Appendix 1 A-D. 

Overdispersed Poisson (OP) as analysis model  

For small    values (Figure 6 and Figure 8) and the overdispersed Poisson distribution as 

analysis model the size of both test statistics is good for values of    . For smaller values 

of   more replications are needed to attain the correct size. Scaling by means of Pearson’s 

chi-squared seems to have the edge over scaling by means of the mean deviance. For larger 

   values (Figure 7 and Figure 9) the size of the both test statistics is generally bad for    . 

For larger replication levels and larger   scaling by means of Pearson’s chi-squared results in 

a better size than scaling by means of the mean deviance. 

Power(1.5) (P1) as analysis model  

For small    values (Figure 6 and Figure 8) and the Power(1.5) analysis model, scaling by 

means of the mean deviance generally gives a conservative test for smaller values of  , while 

scaling by means of Pearson’s chi-squared has correct size, except for small values of   and 

low level of replication  . For larger    values (Figure 7 and Figure 9) both test statistics are 

progressive for small values of   even for large replication levels  . For larger   and 

simulating according to the negative binomial scaling by means of the mean deviance has 

better size than scaling by means of Pearson’s chi-squared. However when data are simulated 

by means of the Poisson-LogNormal this is the other way around 

Gamma (GM) as analysis model  
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For small    values (Figure 6 and Figure 8) and the Gamma analysis model, scaling by 

means of the mean deviance is very conservative, while scaling by means of Pearson’s chi-

squared generally has the correct size. For larger    values (Figure 7 and Figure 9) both test 

statistics perform badly for values    . For larger means scaling by means of Pearson does 

have the edge especially when simulating according to the negative binomial distribution. 

Figure 6: Size of the test when the deviance difference is scaled by means of the mean deviance 

and by means of Pearson’s chi-squared. Data are simulated by the negative binomial 

distribution with   -1 values. 
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Figure 7: Size of the test when the deviance difference is scaled by means of the mean deviance 

and by means of Pearson’s chi-squared. Data are simulated by the negative binomial 

distribution with   -3 values. 

 

Figure 8: Size of the test when the deviance difference is scaled by means of the mean deviance 

and by means of Pearson’s chi-squared. Data are simulated by the Poisson-

LogNormal distribution with   -1 values. 
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Figure 9: Size of the test when the deviance difference is scaled by means of the mean deviance 

and by means of Pearson’s chi-squared. Data are simulated by the Poisson-

LogNormal distribution with   -3 values. 

 

Conclusion 

Scaling of the deviance difference by means of Pearson statistic seems to have somewhat 

better properties especially when the coefficient of variation is small. This conclusion is not 

only based on Figure 6 to Figure 9 but also on the results presented in Appendix 1 A-D. 

Therefore in subsequent comparisons the deviance difference will be scaled by means of 

Pearson’s chi-squared for analysis according to the overdispersed-Poisson, the Power models 

and the Gamma model. 

3.3 Simulated significance level of difference test 

Having decided that scaling of the deviance difference by means of Pearson’s statistic for OP, 

P1, P2, P3 and GM generally has better properties than scaling by means of the mean 

deviance, the size of all analysis methods can be compared. Full details of the size of the 

difference test for all parameter combinations and simulation distributions are given in 

Appendix 1 E-H. Results for the P3 model, with power 1.99, are not displayed since they are 

very similar to the results for the Gamma (GM) model. Results for specific combinations are 

given in Figure 10 to Figure 13.  
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Figure 10: Size of the difference test under various analysis models for data simulated by the 

negative binomial distribution with   -1 values. 

 
 

Figure 11: Size of the difference test under various analysis models for data simulated by the 

negative binomial distribution with   -3 values. 
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Figure 12: Size of the difference test under various analysis models for data simulated by the 

Poisson-LogNormal distribution with   -1 values. 

 
 

Figure 13: Size of the difference test under various analysis models for data simulated by the 

Poisson-LogNormal distribution with   -3 values. 
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The size of the LN and SQ analysis is extremely good for all parameter combinations, except 

for small values of   combined with large coefficients of variations    and low levels of 

replication  . In such cases the LN and SQ tests are conservative. The GLM-like models 

result in sometimes progressive test especially for small means in combination with a large 

coefficient of variation. Among the GLM-like models there is no clear winner although the 

OP analysis seems to outperform the other GLM models somewhat, especially when data are 

simulated according to the Poisson-Lognormal distribution.  

The simulated significance level for all parameter combinations and simulation distributions 

is summarized in Figure 14 to Figure 17. The symbols in Figure 14 to Figure 17 have the 

following meaning: open circle denotes that the test is conservative for lower levels of 

replication and has the correct size for larger replication; closed circle denotes that the test has 

correct size for all replication levels; cross means that the test is mainly progressive; number 

denotes that the test has correct size for levels of replication larger than the plotted number. 

These plots can be used to quickly check for which parameter combination, and for which 

level of replication, the difference test has correct size. These plots clearly indicate, once 

again, that the LN and SQ analysis models have superior size. The best alternative, especially 

for for larger means and smaller coefficients of variation is the OP analysis model. 

Figure 14: Summary of size of difference test; data simulated by Overdispersed Poisson 

(see text for explanation of symbols) 
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Figure 15: Summary of size of difference test; data simulated by Negative Binomial  

(see text for explanation of symbols) 

 

Figure 16: Summary of size of difference test; data simulated by Poisson-Lognormal 

(see text for explanation of symbols) 
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Figure 17: Summary of size of difference test; data simulated by Power(1.5) model 

(see text for explanation of symbols) 

 

There is a large body of literature about the robustness of the two-sample t-test against 

departures from normality, two early references are Pearson and Adyanthāya (1929) and 

Gayen (1950). Miller (1986) summarizes the literature by noting that in case the skewness of 

the two samples is equal and so is the kurtosis then “the kurtosis parameters have little effect 

on the t statistic and when the sample sizes are approximately equal the skewness parameters 

cancel each other approximately”. So assuming that the two samples follow an identical 

distribution, the t-test is very robust against departures from normality. This does not imply 

that the t-test can also be applied to the counts themselves. Taking logs or a squared root 

makes the count distribution more symmetric giving less departures from normality which 

results in better properties of the t-test. 

Conclusion 

The simulated size of the t-test after a log or squared-root transformation, models LN and SQ 

respectively, is close to its nominal level, except for small means and large    values. The 

other analysis models are progressive for small means and larger coefficients of variation. In 

other cases the OP analysis seems to outperform the other GLM-like models.  

3.4 Power of difference test 

The power of the difference test for all parameter combinations is given in Appendices I-L for 

effects size  =0.75 (black),  =0.50 (red) and  =0.25 (green). Results for specific 

combinations are given in Figure 18 to Figure 21. Each small plot has a range of 0 to 1 along 

the y-axis. The grey horizontal lines denote power values of 0.25, 0.50 and 0.75. Values for 
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progressive tests, i.e. when the simulated size of the test is larger than 0.067, are not 

displayed. This once again shows that the LN and SQ tests are never progressive. 

When data are simulated according to the overdispersed Poisson distribution (Appendix 1 I) 

there is very little difference between the power of the various analysis models. However the 

LN and SQ method seem to have a somewhat larger power for larger values of  . 

When data are simulated according to the negative binomial distribution (Appendix 1 J, 

Figure 18 and Figure 19) the LN test occasionally has slightly smaller power than the other 

tests. An example is given in Figure 19 for  =10 and  =20. The GLM-like models have very 

similar power. 

When data are simulated according to the Poisson-Lognormal distribution (Appendix 1 K, 

Figure 20 and Figure 21) the power of the LN and SQ tests is as least as good as for the other 

models.  

When data are simulated according to the Power P1 model (Appendix 1 L), once again the 

power of the LN and SQ tests is as least as good as for the other models.  

Conclusion 

The power of the LN and SQ approach is generally very similar to the power of the other 

analysis methods. In some cases the power of LN and SQ is marginally larger, in other cases it 

is marginally lower. Because there is very little difference between the power of the various 

models, other properties, like the size of tests, of the various models should be decisive as to 

which method is to be preferred.  
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Figure 18: Power of the difference test for effects  =0.75 (black),  0.50 (red) and 0.25 (green) 

under various analysis models for data simulated by the negative binomial 

distribution with   -1 values  

 

Figure 19: Power of the difference test for effects  =0.75 (black),  0.50 (red) and 0.25 (green) 

under various analysis models for data simulated by the negative binomial 

distribution with   -3 values  
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Figure 20: Power of the difference test for effects  =0.75 (black),  0.50 (red) and 0.25 (green) 

under various analysis models for data simulated by the Poisson-Lognormal 

distribution with   -1 values  

 

Figure 21: Power of the difference test for effects  =0.75 (black),  0.50 (red) and 0.25 (green) 

under various analysis models for data simulated by the Poisson-Lognormal 

distribution with   -3 values  
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3.5 Coverage of confidence intervals 

After each analysis a 95% two-sided confidence interval can be constructed for the ratio 

      ⁄  of the two means. This uses the generalized confidence interval approach for the 

LN and SQ models. For the GLM-like models the confidence interval is constructed in the 

usual way employing the estimate of    ( ) and its standard error. One minus the simulated 

coverage probabilities of these intervals are given in Appendix 1 M-P. Each small plot has a 

range of 0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes the 

assumed  =0.05. The red lines denote values 0.033 and 0.067 which provide a range that 

could be expected when 1000 datasets are simulated. So simulated sizes within the red lines 

are OK and such values are denoted by open circles. Values outside this range are denoted by 

filled circles, while values larger than 0.096 are given by triangles. Note that in this case large 

values denote a confidence interval that is too small (i.e. has smaller coverage probability than 

95%), while small values indicate a confidence interval that is too wide (i.e. has larger 

coverage probability than 95%). 

The LN and SQ generalized confidence interval can be used to test the null hypothesis of 

equal means. For LN both the simulated significance level and the simulated power of the 

generalized confidence interval are identical to those of the t-test. This can, for the simulated 

significance level of the LN analysis when data are simulated according to the overdispersed 

Poisson, be seen by comparing the first columns in Appendix 1 E with the top graphs in 

Appendix 1 M1. Similarly for SQ the second columns in Appendix 1 E can be compared with 

the top graphs in Appendix 1 M3. It then turns out that the generalized confidence interval for 

SQ has a slightly lower size significance level than the corresponding t-test for small means 

combined with small levels of replication and larger    values. Similar comparisons can be 

made when data are simulated by the other three distributions. Results for the simulated 

power of the difference test employing the generalized confidence interval are not shown, but 

these are for the LN analysis also identical to the power of the t-test. 

However the properties of the LN and SQ generalized confidence interval are only good when 

testing the null hypothesis of equal means. Coverage of the LN interval deteriorates when the 

ratio       ⁄  of the two means becomes smaller, e.g. the bottom graphs in Appendix 1M1 

for  =0.75 and Appendix 1 M2 for  =0.50 and  =0.25. Coverage of the SQ interval is even 

worse for values  ≠1, see Appendix 1 M3 and M4. So it appears that the generalized 

confidence interval of LN and SQ can be used for difference testing, but it cannot be used for 

equivalence testing.  

The coverage probability of the OP interval, when simulating according to the overdispersed 

Poisson, is generally better than those of the other GLM-like models (Appendix 1 M5-12). 

For smaller values of   and larger values of    the OP interval is too wide indicating that the 

corresponding test is conservative. Intervals for NB, P1 and GM can be too short or too wide 

depending on the parameter combination. 

When data are simulated by means of the negative binomial distribution (Appendix 1 N) the 

OP interval generally has the better properties; the OP interval is almost never too small. 

However for  =0.25 the OP interval is somewhat too wide, while the NB and P1 intervals 
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then have a better coverage except when the    is large in which case these intervals can 

become too small. The P1 interval seems to have somewhat better coverage than the NB 

interval. 

When data are simulated according to the Poisson-Lognormal distribution (Appendix 1 O) the 

NB, P1 and GM interval can be too small especially for smaller   and larger    values. For 

other values the P1 interval seems to have the edge over the NB and GM intervals. The OP 

interval is, once again, somewhat too wide for  =0.25. 

Results for the Power model (Appendix 1 P) are similar to those for the Poisson-Lognormal. 

Conclusion 

The LN and SQ generalized confidence intervals have the same properties as the t-test for 

difference testing, although the SQ interval has a somewhat lower simulated significance level 

for some parameter combinations. However these intervals do not have good coverage 

probability for  ≠1, especially not for small values of  . In such cases the LN interval has a 

less worse coverage probability than the SQ interval. The OP interval is almost never too 

small (meaning that the coverage is not smaller than 95%). It can be too wide though 

especially for  =0.25 in combination with a simulation distribution other than overdispersed 

Poisson. In such cases the P1 interval seems to be the method of choice although P1 has the 

disadvantage that interval can be too small when simulating according to the overdispersed 

Poisson, and also for smaller   and larger    values for the other simulation distributions. 

3.6 Approximate power of the difference test 

Lyles et al (2007) describe a general method to approximate the power of a difference test for 

generalized linear models. Their approach makes use of a single ‘expanded’ dataset based on 

the response distribution. This expanded dataset is then analysed using an appropriate model 

and the power of the test statistic, either Wald or likelihood ratio, can then be calculated 

employing a Chi-squared distribution with a non-centrality parameter which can be easily 

calculated.  

This approximate method is compared with the simulated power of the LN analysis. The 

approximate method consists of the following steps: 

1. Create an ‘expanded’ dataset for the simulation distribution at hand. First choose the 

possible outcomes           for a mean value    of the distribution and calculate 

the corresponding probabilities          . The sum of these probabilities should 

then be close to one. Do the same for a mean value of    giving possible outcomes 

          with probabilities          , with again a sum close to one. Then 

simply stack the two vectors of possible outcomes and also the two vectors of 

corresponding probabilities, denote these as   and  . Also create an indicator vector 

  with a zero for the first set of possible outcomes and a one for the second set. This 

results in the ‘expanded’ dataset consisting of  ,  , and   which are of equal length. 

2. The mean and variance of both log-transformed samples are calculated employing 

      ∑        (     )  and      ∑    [   (     )       ]
 

  and 
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similarly for       and     . An estimate of the residual variance on the 

transformed scale is then given by        (         ). 

3. The ‘expanded’ dataset is analysed by means of a weighted regression of     (   ) 

on   with weights       and fixed residual variance equal to 1. This results in an 

estimate of the regression coefficient   for   along with a standard error   .  

4. The non-centrality parameter is then given by     (   ⁄ )  where   is the number 

of replications. The same non-centrality parameter is obtained by calculating   times 

the difference between the residual sums of squares of the weighted regression model 

without   and the residual sums of squares of the model with  . 

5. The power is calculated in the following way. A critical value       is obtained from 

the F distribution with 1 and 2 -2 degrees of freedom. i.e.  (             )   . 

The approximate power is then calculate by means of the non-central    distribution 

with non-centrality parameter  , i.e. by means of  (   ( )       ). 

A crucial step is the calculation of the residual variance     on the transformed scale. The 

non-centrality parameter   is proportional to the number of replications  , so there is no need 

for stacking the two vectors   times as is proposed by Lyles et al (2007). This implies that a 

single ‘expanded’ dataset can be used for all levels of replication   instead of a separate 

‘expanded’ dataset for each level of replication.  

In the implementation of this approach it was found that it might be numerically more stable 

to use weights         where    is some fixed large number, e.g. 100. This is because 

units with very small weights, in this case with very small probabilities, are sometimes 

discarded when fitting a regression model. The non-centrality parameter is then given by 

  (   ⁄ ) (   ⁄ ) . 

The approximate power is calculated for all four distributions and compared with the 

simulated power. Graphical results are given in Appendix 1 Q1, R1, S1 and T1. Each small 

plot has a range of 0 to 1 along the y-axis. The grey horizontal lines denote power values of 

0.25, 0.50 and 0.75. Simulated powers are given by the dots for  =0.75 (black),  =0.50 (red) 

and  =0.25 (green), while the approximate power is given by the lines. Across the board 

there is very good agreement between the two methods. For low power values and smaller 

numbers of replications the approximate method of Lyles can be somewhat too small, but 

such low power values are hardly of interest.  

The same approach can be followed for the SQ analysis, see Appendix 1 Q2, R2, S2 and T2, 

except that the squared root transformation is used instead of the log transformation. Also in 

this case there is very good agreement between the simulated power and the approximated 

power. 

The same approximate method can be applied for an analysis according to one of the other 

models. For parameter combinations with a simulated significance level which is not (too) 

progressive, the two methods agree closely when analysing with a negative binomial for all 

four simulation distributions (Appendix 1 Q4, R4, S4 and T4). For an analysis with the power 

P1 model (Appendix 1 Q5, R5, S5 and T5) the approximation is good when data are 

simulated according to the negative binomial or the power model especially for larger power 

values. When simulating with the overdispersed Poisson or the Poisson-Lognormal 
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distribution the method of Lyles sometimes gives less good results for the P1 analysis. For an 

analysis with the OP model ((Appendix 1 Q3, R3, S3 and T3) the approximation is frequently 

less good, except for larger means with low    levels. 

Conclusion 

When two-sample count data are analysed by means of the LN or SQ model the method of 

Lyles et al (2007) approximates the power very well for all four simulation distributions. In 

such a case there is no need to perform a simulation study to approximate the power. 

3.7 Method of choice for difference test 

The simulated size of the t-test after a log or squared-root transformation, models LN and SQ 

respectively, is close to its nominal level, except for small means and large    values where 

the test is conservative. The other analysis models are progressive for small means, small 

levels of replication and larger coefficients of variation. In other cases the OP analysis seems 

to outperform the other GLM-like model. 

The power of the LN and SQ approach is generally very similar to the power of the other 

analysis methods. In some cases the power of LN and SQ is marginally larger, in other cases it 

is marginally lower. In those case where the LN and SQ analysis are conservative (small 

means, small levels of replication and larger coefficients of variation), the power is so low 

that it is hardly worthwhile to perform such experiments. In other words for parameter 

combinations with sufficient power the size of the LN and SQ tests is close to its nominal 

level. 

The LN generalized confidence interval has the same properties as the t-test for difference 

testing, with respect to the simulated significance level and with respect to the simulated 

power. This is also true for the SQ interval although the simulated size using this interval is 

smaller than that of the corresponding t-test for small means combined with low replication 

and larger    values. The LN and SQ intervals do not have good coverage probability for 

ratios  ≠1. This is especially the case for the SQ interval and for values of   which are well 

away from one. 

The method of Lyles et al (2007) can be used to approximate the power of the difference test. 

This approximation is very accurate for the LN and SQ analysis. 

The LN or SQ analysis therefor seems to be the method of choice for all simulation 

distributions. They have good size for all relevant parameter combinations, their power is 

comparable to the other analysis methods, a generalized confidence interval has good 

properties when it is used for difference testing, and an approximate quick method can be 

employed for a prospective power analysis. Because the LN generalized confidence interval 

has somewhat better properties than the SQ interval, the LN analysis method seems to be the 

method of choice. 
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4 Results for equivalence testing  

4.1 General remarks on equivalence testing 

A difference test aims to reject the null hypothesis of no difference, i.e. in the current setting 

to reject the hypothesis that  =1. Poorly designed experiments with low levels of replication 

may have low statistical power of finding a true difference. An equivalence test on the other 

hand employs a null hypothesis of non-equivalence, i.e. that the ratio   is smaller, or larger, 

than some pre-described equivalence limit, also called limit of concern (   ). Rejection of 

the non-equivalence hypothesis implies that the ratio is larger than the     and this can be 

regarded as a “proof of safety”. The advantage of equivalence testing is therefore that the 

onus is placed back on to those who wish to demonstrate the safety of GMOs to do high 

quality, well-replicated experiments with sufficient statistical power (Perry et al, 2009). Note 

that both the difference and equivalence test can be implemented by constructing a confidence 

interval for the ratio of the means of the GM plant and its comparator. When there is both an 

lower and an upper Limit of Concern, the two one-sided tests (TOST) approach of 

Schuirmann (1987) for equivalence testing can be used. 

In the sequel results for a one-sided equivalence test, with significance level 5%, are given 

where the limit of concern is smaller than one. The null hypothesis is thus           with 

alternative hypothesis         . Different limits of concern are used in different sections.  

All results are based on the generalized confidence interval for LN and SQ and on the ordinary 

interval for     ( ) for the GLM-like models where the standard error is scaled by Pearsons 

Chi-squared if appropriate. An alternative would be to use a likelihood ratio interval. 

4.2 Size of equivalence test 

The simulated size of the one-sided equivalence test is available for those     values which 

are equal to the ratio  . For  =1 the equivalence test equals the one-sided difference test; 

results for the simulated size of the two-sided difference test are already given in Section 0. 

Results for values  =0.75,  =0.50 and  =0.25 are given in Appendix 2 A-D. Each small plot 

has a range of 0 to 0.1 along the y-axis. The green line is halfway each small plot and denotes 

the assumed  =0.05. The red lines denote values 0.033 and 0.067 which provide a range that 

could be expected when 1000 datasets are simulated. So simulated sizes within the red lines 

are OK and such values are denoted by open circles. Values outside this range are denoted by 

filled circles, while values larger than 0.096 are given by triangles. 

The LN and SQ generalized confidence interval have a generally bad simulated significance 

level, especially for smaller values of  .  This is in accordance with findings in section 3.5, 

and the LN and SQ interval will further not be discussed. Furthermore the P1, P2 and GM 

interval have very similar simulated sizes; only the P1 analysis method will therefore be 

considered in the sequel.  

For the OP, NB and P1 intervals and  =0.50, Appendices 2 A-D are summarized in Figure 22 

to Figure 25. For  =0.25 the appendices are summarized in Figure 26 to Figure 29. The 
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symbols in these figures have the following meaning: open circle denotes that the test is 

conservative for lower levels of replication and has the correct size for larger replication; 

closed circle symbolizes that the test has correct size for all replication levels; cross means 

that the test is mainly progressive; number denotes that the test has correct size for levels of 

replication smaller than or equal to the plotted number; / means that for larger levels of 

replication the test is progressive or that the test is progressive for some other replications; \ 

indicates that the test is progressive for small replication and has the correct size for larger 

replication.  

Figure 22: Summary of size of equivalence test for  =   =0.5; data simulated by 

Overdispersed Poisson (see text for explanation of symbols) 

 

Figure 23: Summary of size of equivalence test for  =   =0.5; data simulated by Negative 

Binomial (see text for explanation of symbols) 

 

Figure 24: Summary of size of equivalence test for  =   =0.5; data simulated by Poisson-

Lognormal (see text for explanation of symbols) 
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Figure 25: Summary of size of equivalence test for  =   =0.5; data simulated by Power(1.5) 

model (see text for explanation of symbols) 

 

Figure 26: Summary of size of equivalence test for  =   =0.25; data simulated by 

Overdispersed Poisson (see text for explanation of symbols) 

 

Figure 27: Summary of size of equivalence test for  =   =0.25; data simulated by Negative 

Binomial (see text for explanation of symbols) 

 

Figure 28: Summary of size of equivalence test for  =   =0.25; data simulated by Poisson-

Lognormal (see text for explanation of symbols) 
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Figure 29: Summary of size of equivalence test for  =   =0.25; data simulated by Power(1.5) 

model (see text for explanation of symbols) 

 

For  =0.50 and data simulated by means of the overdispersed Poisson, the intervals according 

to OP and NB have a better simulated significance levels than the intervals according to P1 

(Figure 22). For data simulated by means of the negative binomial distribution, there is not 

much difference between the analysis methods (Figure 23). For Poisson-Lognormal data the 

OP interval has the edge over the other intervals; the NB interval is only good for low 

coefficients of variation (Figure 24). For data simulated according to the Power(1.5) model, 

the OP interval seems to outperform the other analysis models somewhat (Figure 25). 

For  =0.25 and data simulated by means of the overdispersed Poisson, the intervals according 

to OP have a better simulated significance levels than the intervals according to NB or P1 

(Figure 26). For data simulated by means of the negative binomial distribution, the P1 interval 

performs best while the OP interval can be somewhat conservative for larger values of   

(Figure 27). For Poisson-Lognormal data the P1 interval has the edge over the OP interval; 

the NB interval is only good for low coefficients of variation (Figure 28). For data simulated 

according to the Power(1.5) model, again the P1 interval has the edge over the OP interval 

(Figure 29). 

Conclusion 

The LN and SQ generalized confidence intervals cannot be recommended for equivalence 

testing. The P1, P2 and GM intervals have very similar simulated significance levels. The size 

of the NB interval is particularly worse than that of the other intervals for data simulated 

according to the Poisson-Lognormal model. The NB interval is not better than OP and P1 for 

the other simulation distributions. For  =0.5 the OP interval seems to have the edge over the 

P1 (and this also the case for the P2 and GM) intervals. However for  =0.25 it is the other 

way around because the OP interval is then somewhat more conservative for certain 

parameter combinations. 

So with respect to size the P1 (or P2 or GM) and OP intervals can be recommended for 

equivalence testing. The size of both these interval is only problematic for smaller means and 

larger coefficients of variation. 
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4.3 Power of equivalence test 

Appendices 2 E-H display the power of the one-sided equivalence test for a hypothetical 

one-sided limit of concern    =0.5. Each small plot has a range of 0 to 1 along the y-axis. 

The red horizontal lines denote power values of 0.25, 0.50 and 0.75. The simulated 

probability to reject the null-hypothesis of non-equivalence is given by the black dots and the 

dark grey area in the plot. The probability to decide that “equivalence is more likely than not” 

is given by the grey area. The red points denote the cumulative probability to reject the null 

hypothesis or to decide that equivalence is more likely than not. Finally the light grey area 

denotes the simulated probability that all observations equal zero; these are only present for 

low values of   in combination with large    values. The light grey area can also considered 

to represent a decision that “equivalence is more likely than not”, if that is the case the green 

dots denote the cumulative probability of equivalence or equivalence more likely than not. In 

the sequel the “strict test” stands for equivalence while the “liberal tests” stands for the 

cumulative probability of equivalence and equivalence more likely than not. 

There are separate plots for  =1,  =0.75,  =0.5 and  =0.25. Because the tests based on the 

LN and SQ intervals are generally progressive (section 4.2) the power for these tests is larger 

than for the other models which have a more correct size. The power for the P1, P2 and GM 

tests are very similar. Restricting to those parameter combinations for which the P1 power is 

larger than 0.5, the difference for the strict test is maximally 0.01 between P1, P2 and GM, 

while for the liberal test the difference is maximally 0.08. For the same subset the difference 

between P1 and OP is maximally 0.017 for the strict test of equivalence and 0.027 for the 

liberal test. 

A special case is an effect size  =0.5 in combination with a limit of concern    =0.5. For 

such cases it is expected that the liberal test will be rejected with a probability of 50%. This is 

indeed the case, see e.g. Appendix 2 E9-12. Only for small means   with large    values 

there is some deviation from the 50% probability. 

It is interesting to see that for an effect size  =0.75 and small means  , combined with low 

replication levels, there is still some probability to reject the liberal hypothesis, i.e. there is a 

probability of around 25% to decide for “equivalence more likely than not”, see e.g. Appendix 

2 E13-16. 

Conclusion 

In the preceding section it was found that the intervals based on P1 (or P2 or GM) and OP 

have the best simulated significance levels. Here it is shown that these intervals results in very 

similar power for power values that matter, i.e. values larger than 0.5. 

4.4 Approximate power of the equivalence test 

The method of Lyles et al (2007), used in section 3.6 for difference testing, can also be used 

to approximate the power of equivalence tests. The relevant calculation are, in addition to 

those presented in section 3.6, as follows. A critical value       is obtained from Students 

t-distribution with 2 -2 degrees of freedom. i.e.  (           )   . Furthermore a test 
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statistic   is calculated by   √ (     )   ⁄ . The power of the equivalence test is then 

approximated by means of the upper normal probability  (         ).  

Results are presented in Appendices 2 I-L, only for the OP interval. The different colours 

represent different limits of concern:    =0.75 (black),    =0.50 (red),     =0.25 (green), 

    =0.10 (blue). The dots denote the simulated values, while the lines represent the 

approximate values. The pages are for different values of the effect size   as given in the title 

of the page. When data are simulated according to the overdispersed Poisson distribution 

(Appendix 2 I) the approximation is very good especially for larger power values. The same 

holds for data simulated by means of the negative binomial distribution (Appendix 2 J) and 

the Power(1.5) distribution (Appendix 2 L). However for the Poisson-Lognormal distribution 

the approximation is not good (Appendix 2 K). 

Conclusion 

The method of Lyles et al (2007) can be used to approximate the power of a one-sided 

equivalence test when using the OP interval, except when the simulation distribution is 

Poisson-Lognormal. For the other simulation distributions there is no need to perform a 

simulation study to approximate the power. 

4.5 Method of choice for equivalence testing 

The LN and SQ generalized confidence intervals should, in general, not be used for 

equivalence testing because they are too progressive, i.e. they result in too many rejections of 

the null hypothesis of non-equivalence.  

The simulated significance level of the OP and P1 (or P2 or GM) intervals outperform that of 

the NB interval when data are simulated by the Poisson-Lognormal distribution. There are 

only small differences between the power of the OP and P1 (or P2 or GM) intervals for power 

values that matter. 

It is thus hard to discriminate between the OP and P1 intervals. Since the OP analysis method 

is more generally used and widely accepted, as opposed to the maybe more esoteric P1 

analysis, the OP analysis is recommended.  

The method of Lyles et al (2007) can be used to approximate the power of the one-sided 

equivalence test using the OP interval, except when the simulation distribution is Poisson-

Lognormal. This approximate method might also work for the P1 interval but this was not 

investigated. 
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5 Zero inflation 

5.1 Introduction 

In practice the number of zero observations can be larger than predicted by the count 

distribution. This is termed excess-zeros or zero-inflation. Examples of situations with excess-

zeros are given by Cunningham and Lindenmayer (2005), Sileshi (2008) and Lewin et al 

(2010). Failure to account for zero inflation in a statistical analysis may results in biased 

estimation of environmental effects of GM plants. Goedhart (2013, 2014) describes the 

common way to model zero-inflation. 

Having a lot of zero observations in itself does not necessarily mean that a zero-inflated 

model is needed. For instance the negative binomial distribution with a large coefficient of 

variation and a not too large mean is capable of generating many zeros along with some large 

observations. As an example, 10 samples of size 10 are given below which are simulated by 

means of a negative binomial distribution with mean  =5 and coefficient of variation 

  =300. Clearly many zeros can be accompanied by few large observations. 

0 0 0 0 0 0 0 0 0 9 

0 0 0 0 0 0 6 7 22 39 

0 0 0 0 0 0 0 4 13 14 

0 0 0 0 0 1 3 13 13 25 

0 0 0 0 0 0 1 1 3 9 

0 0 0 0 0 1 1 1 5 7 

0 0 0 0 0 0 4 7 12 23 

0 0 0 0 0 0 0 4 41 61 

0 0 0 0 0 0 0 3 4 60 

0 0 0 0 0 0 0 0 0 20 

 

Consequently it can be hard, especially for small samples sizes, to distinguish between a zero 

inflated distribution and an ordinary non-inflated distribution. 

5.2 A zero-inflated negative binomial distribution and its non-inflated 

counterpart. 

Consider a zero-inflated negative binomial distribution with parameters  ,   and dispersion 

parameter   . Note that this distribution has mean (   ) . To see whether such a 

distribution can be distinguished from a non-inflated negative binomial distribution a large 

number of observations, 10000, are simulated from the zero-inflated distribution. The non- 

inflated negative binomial distribution was then fitted to this large sample yielding fitted 

probabilities. This was done for       and a variety of means   and dispersion parameters 

  . Results are given in Figure 30. From this it seems clear that it will only be possible to 

discriminate between the two distribution for large   and small dispersion   . For other 

values an ordinary negative binomial distribution, with the same overall mean, can be used 

instead. 
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Figure 30: Theoretical zero-inflated negative binomial cumulative distribution (black line) and 

fitted non-inflated negative binomial cumulative distribution (red circles) for 

various means   and dispersion parameters   . 

 

5.3 Size of the LN difference test when there is zero inflation 

To investigate whether the t-test after a logarithmic transformation is also has correct size 

when there is zero inflation an additional small simulation study was performed. More 

specifically it is studied whether the simulated level of the t-test is close to its assumed level 

when the distribution of the two samples is identical and zero-inflated. This was done by 

simulating from 7 different count distributions: Poisson, overdispersed Poisson with 

dispersion parameter 3, 4 and 8, and negative binomial with dispersion parameter 1, 2 and 4. 

Note that, instead of specifying a coefficient of variation, in this simulation study the 

dispersion parameter itself is specified. Mean   values of 2, 4, 10, 20, 40 and 80 were 

employed with an additional zero-inflation probability of  =0.5. The mean of a zero-inflated 

distribution equals   (   ) , implying that mean   values of 1, 2, 5, 10, 20 and 40 are 

used here. For each parameter combination 1000 datasets are simulated and a two-sided t-test 

was performed on the log transformed counts. The simulated significance levels are given in 

Figure 31. Even in this case the simulated level of the t-test, using the log transformed count, 
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is good except for small levels of replication in combination with a large overdispersion. In 

such cases the t-test is generally conservative rather than progressive, with the exception of 

the overdispersed Poisson distribution with small levels of replication and large means  . So 

even in this case the simulated significance level of the LN analysis is generally good. 

Figure 31: Simulated level of the LN test when data are simulated according to a zero-inflated 

distribution. The green line represent the theoretical 5% level. Open circles when 

the simulated level is within the expected range as given by the red lines. 

 

5.4 Power of the NB difference test for negative binomial data 

To evaluate the effect of excess zeros on the power of the ordinary likelihood ratio test a 

separate simulation with the excess zero negative binomial distribution was executed. Again a 

single trial without blocking with a single measurement was assumed. Furthermore a 

multiplicative ratio  =2 was used between the GM plant and the comparator. The excess zero 

probability was set to δ = 0, 0.1, 0.2 and 0.5. The mean (   )  of the zero inflated 

distribution was set to 1, 5 and 40 ensuring that the means of the distributions are identical for 

different values of  . The data were analysed with the negative binomial distribution as if 

there were no excess zeros. The power for different levels of replication are given in Figure 

32. This indicates that for small means and small excess zero probabilities the power is not 

much affected. However for larger means there can be a considerable decline of the power. 

For an excess probability of δ = 0.5 and larger means the resulting distribution has a spike at 

zero in combination with larger values with not very much in between. In such a situation the 

estimate of the dispersion parameter becomes very large so as to “catch” both the zeros and 

the larger observations. Consequently the distinction between the means of the comparator 

and the GMO disappears resulting in very low power values. In such a case the data should 

possibly be analysed by means of an excess zero distribution. 
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Figure 32: Power of a difference test with   = 0.05 for negative binomial data with 

overdispersion parameter   = 0.25 and additional excess zeros with probability 

  = 0 (black),  0.1 (red),  0.2 (blue) and 0.5 (green). The comparator has mean 

 (   ) and the GM plant has a mean of   (   ). 
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6 Conclusion 

An important note is that the conclusions below pertain to the situation in which a GM plant is 

compared with a single counterpart in a completely randomized field experiment with a single 

count as response. It is however likely that  

For difference testing the LN or SQ method seems to be the method of choice with excellent 

size for parameter combinations with sufficient power. The power of these tests is generally 

comparable to that of the other models. So even when data are simulated according to say the 

overdispersed Poisson distribution, it is still best to perform a difference test on the log or 

squared root transformed counts. The difference test can probably best be communicated by a 

confidence interval as this visualizes the result of the difference test. When this is indeed the 

case, the LN method has the advantage over the SQ method because the LN generalized 

confidence interval has somewhat better properties. However this interval can and should not 

be used for equivalence testing as it only has good properties under the null hypothesis of no 

difference. An approximate method, employing an expanded dataset, is available to quickly 

calculate the power of the LN test making a simulation study superfluous. 

For equivalence testing the situation is less clear cut. Two competing methods, OP and P1, 

perform equally well with respect to size and power of the one-sided equivalence test. 

However since the OP analysis is more generally used and widely accepted, the OP analysis 

is recommended. It must be considered though that the size of the equivalence test is 

somewhat problematic for smaller means and lager coefficients of variation. Figure 22 to 

Figure 29 might be used to provide a guideline for which parameter combinations the OP 

equivalence test has the correct size. Also for the one-sided equivalence test a fast method to 

calculate the power is available, except when the simulation distribution is Poisson-

Lognormal. 

Zero inflation, i.e. more zeros than predicted by the count distribution, can be a problem. 

However for small sample sizes it might be difficult to discriminate between a zero-inflated 

distribution and a non-inflated distribution. A small simulation study suggests that, for the 

negative binomial distribution, it is only possible to discriminate between the two for large 

means and small coefficients of variation. Another simulation study indicates that the power 

will be heavily affected for larger mean counts combined with a large excess zero probability. 
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Description of Appendices 

All Appendices 

The distribution used to simulate the data is given in the main heading of each page. The 

abbreviated simulation distribution is also given in the title of each separate plot along with 

the mean   of the distribution in parenthesis. The columns across the page either represent 

1/ different analyses methods with which the data are analysed, or 2/ different means   for 

which results are displayed. In the first case the abbreviated analysis method is also given in 

the title of each plot after the line (-) symbol. The abbreviations are as follows: 

 LN analyses after a Log transformation (1 added to the data before transformation) 

 SQ analyses after a Squared Root transformation 

 OP Overdispersed Poisson (used for simulation and analyses) 

 NB  Negative Binomial (used for simulation and analyses) 

 P1 Power model with  =1.5 in the variance function (used for simulation and analyses) 

 P2 Power model with  =1.7 in the variance function (used for analysis only) 

 GM analysis with a Gamma distribution (0.001 added to the data) 

 PL Poisson-LogNormal distribution (used for simulating data only) 

So for example the title “OP(0.5) - LN” denotes that the data are simulated with an 

Overdispersed Poisson distribution with mean  =0.5 and are analysed after a Logarithmic 

transformation of the data.  

The five separate small plots along the y-axis display results for five different values of the 

coefficient of variation (  ) of the simulation distribution. Note that these five    values are 

different for different values of the mean  . In some plots the real    values are given, in 

others they are coded by   -1 (small) to   -5 (large). Results in each plot are for the 10 

different replication levels 4, 6, 8, 10, 15, 20, 30, 40, 60 and 100 which are given along the 

x-axis of each small plot. 

Appendix 1  A – D:  Size of difference test: scaling by the mean deviance or by Pearson  

Displays the simulated size (i.e. significance level) of the difference test with  =0.05 when 

the test statistic (i.e. the deviance difference) is scaled by the mean deviance or Pearson’s 

statistic of the full model. The two scaling’s are denoted by respectively “dev” and “pear” in 

the heading of each plot. Each small plot has a range of 0 to 0.1 along the y-axis. The green 

line is halfway each small plot and denotes the assumed significance level  =0.05. Red lines 

are drawn at values 0.033 and 0.067, and these provide a range which could be expected when 

1000 datasets are simulated. So simulated sizes within the red lines are OK; such values are 

depicted by open circles. Values outside this range are denoted by filled circles, while values 

larger than 0.096 are given by triangles. 

Appendix 1  E – H:  Size of difference test: comparison different analysis methods 

Displays the simulated size of the difference test with  =0.05 for seven different analysis 

methods. For the analysis models OP, P1, P2 and GM the test statistic (i.e. the deviance 

difference) is scaled by Pearson’s statistic. Each small plot has a range of 0 to 0.1 along the y-

axis. The green line is halfway each small plot and denotes the assumed significance level 

 =0.05. Red lines are drawn at values 0.033 and 0.067, and these provide a range which could 
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be expected when 1000 datasets are simulated. So simulated sizes within the red lines are OK; 

such values are depicted by open circles. Values outside this range are denoted by filled 

circles, while values larger than 0.096 are given by triangles. 

Appendix 1  I – L: Power of difference test: comparison of different analysis methods 

Displays the power of the difference test for an effect size of  =0.75 (black dots and line), 

 =0.5 (red dots and line) and  =0.25 (green dots and line). For the analysis models OP, P1, 

P2 and GM the test statistic (i.e. the deviance difference) is scaled by Pearson’s statistic. Each 

small plot has a range of 0 to 1 along the y-axis. The grey horizontal lines denote power 

values of 0.25, 0.50 and 0.75. Values for progressive tests, i.e. when the simulated size as 

given in the corresponding Appendix 1 E-H is larger than the upper limit of 0.067, are not 

displayed. 

Appendix 1  M – P: One minus Coverage Probability of confidence intervals  

Displays one minus the coverage probability of 95% confidence intervals after an LN, SQ, 

Op, NB, P1 and GM analysis. The LN and SQ intervals are generalized confidence intervals 

constructed by simulation. The other confidence intervals are based on the parameter estimate 

for the ration of the two means and its standard error. Each small plot has a range of 0 to 0.1 

along the y-axis. The green line is halfway each small plot and denotes the assumed  =0.05. 

The red lines denote values 0.033 and 0.067 which provide a range that could be expected 

when 1000 datasets are simulated. So simulated sizes within the red lines are OK; such values 

are denoted by open circles. Values outside this range are denoted by filled circles, while 

values larger than 0.096 are given by triangles. The latter values indicate that the interval has 

a larger coverage probability than 5% 

Appendix 1  Q – T: Power of LN difference test using the method of Lyles et al 

Displays the power of the LN difference test for an effect size of  =0.75 (black dots and line), 

 =0.5 (red dots and line) and  =0.25 (green dots and line). The dots denote the simulated 

power, employing 1000 datasets, and the lines are generated by means of the method of Lyles 

et al which used a single synthetic dataset. Each small plot has a range of 0 to 1 along the 

y-axis. The grey horizontal lines denote power values of 0.25, 0.50 and 0.75. Simulated 

powers for progressive tests, i.e. when the simulated size as given in the corresponding 

Appendix 1 E-H is larger than the upper limit of 0.067, are not displayed. 

Appendix 2  A – D:  Size of one-sided equivalence test  

Displays the size of the one-sided equivalence test with  =0.05 for a limit of concern   which 

is equal to the effect size  =0.75,  =0.5 and  =0.25. Each small plot has a range of 0 to 0.1 

along the y-axis. The green line is halfway each small plot and denotes the assumed  =0.05. 

The red lines denote values 0.033 and 0.067 which provide a range that could be expected 

when 1000 datasets are simulated. So simulated sizes within the red lines are OK; such values 

are depicted by open circles. Values outside this range are denoted by filled circles, while 

values larger than 0.096 are given by triangles. 
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Appendix 2  E – H:  Power of one-sided equivalence test  

Displays the power of the one-sided equivalence test for a hypothetical limit of concern of 

 =0.5 and  =0.05 for effect sizes  =1,  =0.75,  =0.5 and  =0.25 as given in the mean 

heading of each page. Each small plot has a range of 0 to 1 along the y-axis. The red 

horizontal lines denote power values of 0.25, 0.50 and 0.75. The dark grey area under the 

black dots denotes the simulated probability of rejecting the null-hypothesis of non-

equivalence, i.e. the probability of concluding  that the GMO and the comparator are 

equivalent. The grey area under the red dots denotes the probability of concluding 

“equivalence more likely than not”. The light-grey area under the green dots denotes the 

probability that the GMO and the comparator samples only consists of zeroes. This can also 

be viewed as “equivalence more likely than not”. 

Appendix 2  I – L:  Power of OP equivalence test using the method of Lyles et al 

Displays the power of the OP one-sided equivalence test, with  =0.05, for effect sizes  =1, 

 =0.75,  =0.5 and  =0.25 as given in the mean heading of each page. Limits of concern are 

 =0.75 (black dots and lines),  =0.5 (red dots and lines),  =0.25 (green dots and lines) and 

 =0.1 (blue dots and lines). The dots denote the simulated power, employing 1000 datasets, 

and the lines are generated by means of the method of Lyles et al which used a single 

synthetic dataset. Each small plot has a range of 0 to 1 along the y-axis. The grey horizontal 

lines denote power values of 0.25, 0.50 and 0.75.  
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