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1 Introduction 
This report describes  

1) an inventory of field studies and statistical lessons learned from existing datasets about 
ecological data from field studies studying differences between varieties of a crop, and  

2) statistical models and a simulation tool that may be useful for designing such field 
studies and analysing the results.  

This introductory chapter first recalls the general objectives of statistical modelling in the 
AMIGA project. Then the two tasks which are reported in this document are described. 
Results of Task 9.1 (Inventory of existing datasets) are given in Chapters 2 and 3, results of 
Task 9.2  (Building a statistical simulation model) are in Chapters 4-7. The simulation tool 
described in these chapters is available on request (e-mail paul.goedhart@wur.nl). In Chapter 
8 some preliminary applications in a simple example are given. This work will be further 
elaborated in Task 9.3 starting in 2013. Chapter 9 gives the references. 

A basic statistical approach to environmental risk assessment (ERA) has been outlined in the 
EFSA Guidance Document (EFSA, 2010b) and in Perry et al. (2009). However, this approach 
is not specified in great detail. The aim of the statistics work package is to make the EFSA 
guidelines workable, practical and to fill in the gaps. This will result in a protocol which will 
provide risk assessors with a step-by-step approach for both design and statistical analysis of 
field trials. Statistical consideration of the EFSA for the safety evaluation of genetically 
modified organisms (EFSA, 2010a) will be incorporated in this protocol. Work package 9 will 
develop statistical concepts, methods, software and protocols for environmental risk 
assessment (ERA) and post-market environmental monitoring (PMEM). Main objectives are: 

• to develop appropriate statistical methods to handle Genotype by Environment 
interaction in studies over multiple bio-geographic regions and under varying 
agronomical conditions. This is expected to be a major issue in the context of 
European ERA; 

• to introduce equivalence testing as a main approach for ERA in addition to difference 
testing, and to establish protocols for experimental design based on acceptable test 
characteristics; 

• to develop statistical approaches for handling data sets with many low counts and 
presence/absence data, as often encountered in ERA. Current practice is to use models 
based on normal distributions but this may not be appropriate; 

• to implement methods in software for practical use; 
• to provide protocols and draft texts for guidelines. The protocol will provide risk 

assessors with a set of evaluated, standardized and harmonized sampling and testing 
methods for environmental risk assessment; 

• to provide guidelines for multivariate statistical approaches appropriate for PMEM. 
 
Existing datasets will be studied to characterise baseline conditions found in different bio-
geographic regions, and to typify the variation of genotypes and environments (Task 9.1). 
Based on these results a simulation model will be built (Task 9.2), which will be used to test 
various statistical approaches for data analysis in relation to the possible design of 
experiments (e.g. sample size). Statistical approaches will use both difference and equivalence 

mailto:paul.goedhart@wur.nl
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testing, and a graphical display of assessment results will be developed (Task 9.3). Also for 
multi-environment studies appropriate statistical methodology will be developed, including 
the consideration of genotype by environment interaction (Task 9.4). The statistical methods 
for analysis and design of field trials for Environmental Risk Assessment that give the best 
performance will be described in protocols for both single-environment (Task 9.3) and multi-
environment studies (Task 9.6). 

The current report describes the results of the first two tasks in the WP 9 plan of work: 

1.1 An inventory of existing datasets – Task 9.1 
In order to develop a robust protocol, it is essential to test it using real life datasets. Such 
datasets will become available in other WPs of the project in which field experiments will be 
performed with GM plants and their conventional counterparts (WP4, WP5, WP6, WP8). 
However, this will only result in real data later in the project. The first task is therefore to 
collect data of field experiments which have been performed in the past. Such datasets will 
include endpoints which are envisaged to be used in future ERA experiments.  

1.2 Building a statistical simulation model – Task 9.2 
The assessment of GM plants includes the use of statistical difference and equivalence testing. 
The protocol will give guidelines for performing such tests. It is important to know the 
statistical properties of such tests, for example the power and robustness of a test and whether 
the test has the correct size. Such and other issues related to the protocol can and must be 
researched by means of a statistical simulation model. A simulation model will therefore be 
developed mimicking the type of field experiments as will be used in WP4, WP5 and WP6. 
The simulation model will generate data for various endpoints having different statistical 
distributions. Typical environmental data are counts or presence/absence data, and a common 
approach is to use statistical models based on the normal distribution. For large abundances or 
replicated presence/absence data this may be a valid approach. However, counts of species 
with low abundance levels typically follow a Poisson distribution, and presence/absence data 
usually follows a binomial distribution. Clumping might give rise to over-dispersed 
distributions such as the negative binomial for counts and the beta-binomial for 
presence/absence data. The simulation model must also encompass the blocking structure of 
an experiment and the environmental variation which is manifest on a site-to-site and a year to 
year basis. The parameters of the simulation model will be guided by analysis of the datasets 
gathered in Task 9.1, and, if necessary, by expert opinion. 
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2 Overview of existing ERA datasets 
Data collection in experimental fields with genetically modified crops has been conducted for 
many years and a large variability of experimental designs, sampling techniques, guilds of 
non-target arthropods and statistical methods have been used (e.g. Marvier et al., 2007). 

To summarize the different approaches presented in the scientific literature, we selected 25 
field studies among those firstly published, where the detection of possible effects of GM 
plants on natural enemies was the primary goal of the study (Table 2-1). The papers were 
published from 1992 until 2005 and several different crops were included in the selected 
references. The table presents some of the indicators relevant to the experimental design, 
collection methods and statistical analyses performed on the data. None of the papers 
provided a power analysis for the experiments described. 

Table 2-1: Main characteristics of fields experiment using GM crops 

Authors Functional 
group 

Crop Measurement 
endpoint 

Dimensions Experim. 
design 

Statistic. 
method 

Al Deeb et al 2001 
J. Econom. Ent. 

 

Predators Maize Abundance 
(visual counts) 

40 plants, 2 
locations 

Completely 
randomised 

ANOVA 
mixed 
model 

Pilcher et al 1997 
Env. Ent. 

 

Predators Maize Abundance 
(visual counts) 

2 years, 3 
replications (6 

plants in 
each), 3 

sampling 
dates 

Randomised 
blocks 

ANOVA 

Wold et al 2001 
J Ent Sci 

 

Predators Maize Abundance 
(visual counts) 

2 years, 4 
replications, 6 

sampling 
dates 

Completely 
randomised 

ANOVA 

Al Deeb & Wilde 
2003. Env. Ent. 

 
 

Predators Maize Abundance 
(visual counts, 
pitfall traps) 

2 years, 8 
locations 

Completely 
randomised 

ANOVA 
mixed 
model 

Johnson 1997 
Env. Ent. 

 

Parasitoids Tobacco Parasitism rate 3 years, 15 
sites 

Randomised 
blocks 

ANOVA 

Orr & Landis 
1997. J. Econom. 
Entomol. 

 
 

Parasitoids 
Predators 

Maize Egg fate 
Parasitism rate 
Visual counts 

3 replications 
(50 plants), 3 

sampling 
dates 

Completely 
randomised 

ANOVA 

Riddick et al 1998 
Ann.Ent.Soc.Am. 

 

Predators Potato Abundance 
(visual counts, 

sweep nets, 
pitfall traps) 

2 years, 3 sites Completely 
randomised 

ANOVA 

Johnson & Gould 
1992. Env. Ent. 

 
 

Parasitoids Tobacco Parasitism rate 9 replications, 
2 years 

Randomised 
blocks 

Chi-square 

Mascarenhas & 
Luttrel 1997  
Env. Ent. 

 

Parasitoids Cotton Host survival 4 replications Completely 
randomised 

ANOVA 
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Naranjo 2005 
Env. Ent. 

 

Predators Cotton Diversity 6 years, 3-4 
replications 

Completely 
randomised 

ANOVA, 
PCA 

Manachini &  
Lozzia 2002 
Boll. zool. agr.  
bachic. 

 

Soil 
organisms 

Maize Abundance and 
diversity (after 

extraction) 

2 separate 
fields at 8 

locations. 50 
soil samples 

n.a. ANOVA 

Bourguet et al  
2002 
Env. Biosaf. Res. 

 

Predators 
Parasitoids 

Maize Abundance 
Parasitization 

2 sites, 4 
replications, 

weekly 
samplings 

Split-plot ANOVA 

Buckelew et al  
2000 
J. Econ. Entomol. 

 

Predators Soybean Abundance 
(sweep nets) 

2 sites, 2 
years, weekly 

samplings 

Randomised 
blocks 

ANOVA 

Wei-Di et al 2004 
Chinese J Agric.  
Biotec. 

 

Herbivores 
Predators 

Parasitoids 

Cotton Abundance and 
diversity 

(suction device) 

2 years, 3 
replications 

Completely 
randomised 

ANOVA, 
Diversity 
indexes 

Jasinsky et al 2003 
Environ Entomol 

 

Predators Soybean 
Maize 

Abundance 
(sweep nets, 

sticky traps, soil 
samples) 

24 
commercial 

fields 

n.a. ANOVA 

Men et al 2003 
Environ Entomol 

 

Herbivores 
Predators 

Parasitoids 

Cotton Abundance 
(sweep nets, 

visual counts) 

3 years, 3 
replications, 5 

sampling 
dates 

Completely 
randomised 

ANOVA + 
diversity 

Musser & Shelton 
2003 
J. Econ. Entomol. 

 

Predators Maize Abundance 
Egg predation 

2 years 2-10 
plants/replicat

ion 

Randomised 
block 

ANOVA 

Reed et al 2001 
Ent Exp Appl 

 

Predators Potato Abundance 
(visual counts) 

2 years, 6 
replications 

Latin square ANOVA 

Wolkmar et al  
2003 Agricul 
Ecosys Environ 

 

Predators Sugar 
beet 

Abundance 
(pitfall traps) 

4 replications Randomised 
blocks 

ANOVA 

WU & Guo 2003 
Environ Entomol 

 

Predators Cotton Abundance 
(visual counts) 

3 replications Completely 
randomised 

ANOVA 

Duan et al 2004 
Environ Entomol 

 

Predators Potato Abundance 
(pitfall traps) 

2 years, six 
replications 

Latin square ANOVA 

Wade French et al 
2004 
Environ Entomol 

 

Predators Maize Abundance 
(pitfall traps) 

2 years, 
commercial 

fields 

n.a. Canonical 
correspond

ence 
Candolfi et al  
2004 Biocontrol 
Science and 
Technology 

 

Predators 
Herbivores 

Soil 
organisms 

Maize Abundance 
(pitfall traps, 
yellow traps, 

frappage) 

3 replications 
(field size) 

Completely 
randomised 

Principal 
response 

curve, 
diversity 
indexes 

De La Poza et al 
2005 
Crop Protection 

Predators Maize Abundance 
(visual couints, 

pitfall traps) 

2 locations, 3 
years, 3-4 
replicates 

Completely 
randomised 

(split for 
year and 
location) 

ANOVA 

Manachini et al 
2004 
IOBC/WPRS 
Bullettin 

Soil 
organisms 

Canola Extraction from 
soil 

3 replications Completely 
randomised 

Multi 
variate 
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However, ecological data collections in agricultural research are routinely conducted with 
many different scopes and the use of plants resistant to insects is only one of such cases. For 
an investigation of statistical models for further use in the AMIGA project, the availability of 
raw data collected in herbaceous crops was necessary. Some data sets available by partners of 
the project were then screened with the aim of analysing the characteristics of ecological data 
in different cropping systems. Several functional groups of arthropods were considered, with 
particular attention to herbivores and their natural enemies. 

Case study 1: strawberry. Source: Field collection performed by ENEA. Sampling 
method: visual counts. Functional group studied: herbivores.  
The data set consists of observations conducted for two years (2004 and 2005) in Southern 
Italy in an experimental field where a collection of 10 strawberry varieties was sampled with 
the aim of selecting for tolerance/resistance to herbivores (namely, spider mites and aphids). 
The experimental design was a completely randomized one, with 6 replications (in 2004) and 
5 replications (in 2005). Each replicated plot contained 10 plants, all of them were sampled. 
Aphys gossypii Glover (the cotton aphid) is a serious pest of several herbaceous crops. Its 
population was sampled by counting visually the numbers of individuals on one randomly 
chosen leaf for each plant; samples were taken weekly from 15 March 2004 to 31 May 2004 
and from 3 May 2005 to 20 June 2005.  
Tetranychus urticae Koch (the red spider mite) is one of the main arthropod pests of 
strawberry. The data set contains visual counts of spiders present on one randomly chosen leaf 
on each of the ten plants per plot. Twelve weekly samples were conducted in 2004 between 
15 March and 31 May, in 2005 only two samples were conducted (16 and 29 May).  
 
Case study 2: cabbage. Source: Field collection performed by Wageningen University. 
Sampling method: visual counts. Functional groups studied: herbivores and natural 
enemies. 
The data set consists of observations conducted for two years (2008 and 2009) in The 
Netherlands. Four cultivars of white cabbage were sampled weekly from early June till end of 
September by randomly choosing 9 plants per plot. Assessment endpoints were herbivores (an 
aphid and the diamondback moth) and their natural enemies (two parasitoid and two predator 
species). While the first herbivore is a sap feeder, the second one is a leaf miner. 
Brevicoryne brassicae L. (the cabbage aphid) is a pest of Crucifers. The data set is made of 
visual counts of aphids.  
Plutella xylostella L. (the diamondback moth) is a worldwide pest lepidoptera of Crucifers. 
The data set contains counts of larvae and pupae.  
Diaeretiella rapae McIntosh is a hymenoptera parasitoid which has B. brassicae as a host. 
The data set contains visual counts of mummies and parasitized aphids.  
Diadegma semiclausum Hellén is a parasitoid of P. xylostella larvae; the data set contains the 
number of pupae of the herbivore pest parasitized by D. semiclausum.  
Episyrphus balteatus de Geer is a syrphid fly (Diptera) whose larvae are generalist predators 
on several insect species, and are active predators of aphids. The available data set contains 
visual counts of larvae and pupae of the predator.  
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Chrysoperla carnea Stephens is a generalist predator belonging to the family Neuroptera, 
aphids are among the favourite preys of the species. The data set contains visual counts of 
eggs and larvae of the predator.  
When considering population dynamics at field level, it is expected that trophic relationships 
between taxa generally lead to correlations between the abundance of herbivores and their 
natural enemies. However, several possible outcomes can be expected.  
 
Case study 3: potato. Source: Field collection performed by ENEA. Sampling method: 
visual counts. Functional groups studied: herbivores and natural enemies. 
The data set consists of observations conducted for two years (2001 and 2003) in Southern 
Italy in an experimental field where a genetically modified potato clone resistant to 
Coleoptera and its isogenic control were sampled. The goal of the study was to detect any 
possible effects due to the use of the different varieties on arthropod species assemblages. The 
experimental design was a completely randomized one, with 3 replications per each treatment. 
Twelve plants per plot were sampled. Assessment endpoints were specific stages of 
herbivores and natural enemies (19 of such endpoints were selected in 2001 and 23 in 2003). 
Ten samplings were conducted in 2001and five sampling dates are available for 2003.  
 
Case study 4: pollinators. Source: Field collection performed by Wuerzburg University. 
Sampling method: visual observations. Functional group studied: pollinators(honeybees). 
Direct effects of flowering Bt maize plants on honey bee colony development was studied 
under semi-field conditions. Inside the tents, the only available pollen source for the bees was 
maize pollen of the different maize varieties. The data set consists of four treatments 
(including Bt plants, near isogenic line and further conventional maize varieties) distributed 
according to a randomized block design with 13-14 replicates (represented by hives). Several 
endpoints were collected (e.g. foraging behaviour, reproductive capacities, colony 
development, hatched bees, sealed broods, etc.) 
 
Case study 5: soil DNA sequences. Source: Field experiment performed by the Institute for 
Biodiversity Braunschweig. Sampling method: DNA extraction from soil. Species studied: 
soil bacteria. 
The dataset is based on bacterial DNA sequences and the number of sequences assigned to the 
respective genus is reported as measurement endpoint. Five treatments (including soil 
collected from plots cultivated with genetically modified maize) were tested and the analysis 
was done on two soil samples (replicates) per treatment. The goal of the study was to 
associate microbial diversity to the different treatments. 
 
The remainder of this report focuses on relatively simple ecological datasets similar to case 
studies 1-3, where counts or presence/absence data of non-target organisms are available in 
randomised block designs. Case studies  4 and 5 concern more specialised experimental 
designs and types of data, and require the development of statistical methods on a case-by-
case basis outside the scope of this report.  
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3 Analysis of some datasets 
Two datasets provided by AMIGA partners have been re-analysed, and results are reported in 
this chapter. In Section 3.1 some statistical characteristics of the ENEA strawberry data are 
described, in Section 3.2 this is done for the WU cabbage data. 

3.1 ENEA strawberry experiments, case study 1 
Data were provided by ENEA. Ten different strawberry varieties were assessed for resistance 
to arthropods without a reference variety. Two taxa were sampled: aphids and spider mite. A 
completely randomized block design was used with 6 blocks and 10 plants per plot. Taxa on 
one leaf per plant were weekly sampled. The experiment was conducted in 2004 over a period 
of 12 weeks from March 15 until May 31, and in 2005 over a period of 8 weeks from May 03 
until June 20. The observed counts per plants were summed over the 10 plants for each 
experimental unit and for each sampling date.  

3.1.1 ENEA aphids on strawberry 2004 
The mean number of aphids classified by the varieties, which are numbered from 1 to 10, on 
the 12 sampling dates is given in Table 3-1. It is clear that aphids became more abundant 
during the growing season although even at the end of the experiment there are still plots with 
very low numbers of aphids. 

Table 3-1: Mean number of aphids for each variety in the ENEA strawberry experiment 2004 

Variety 15-3 23-3 30-3 06-4 13-4 20-4 27-4 03-5 11-5 18-5 25-5 31-5 
1 3.3 1.5 1.3 2.2 5.0 3.2 8.7 9.8 42.3 27.3 50.3 25.8 
2 1.7 0.3 0.5 0.5 1.8 4.0 6.2 8.3 39.3 44.7 54.2 27.8 
3 1.3 0.8 1.8 0.5 3.0 3.5 4.8 6.2 33.8 31.2 46.0 24.8 
4 5.2 1.7 7.0 4.7 6.8 8.7 5.8 15.3 65.7 36.2 27.5 24.5 
5 2.7 2.3 2.3 1.7 15.5 6.0 69.5 65.0 58.7 82.5 58.7 58.5 
6 2.2 6.5 4.8 2.8 8.3 4.5 22.0 20.7 74.5 74.8 29.5 25.5 
7 3.2 1.5 2.7 1.7 7.2 6.0 12.5 28.8 37.2 47.8 24.0 20.7 
8 0.0 0.8 0.3 0.4 2.7 5.2 11.3 9.2 73.7 44.8 51.2 24.3 
9 2.3 4.3 2.7 1.5 2.7 2.2 1.7 8.2 10.3 8.8 15.7 8.0 

10 2.0 2.5 1.3 1.0 3.5 0.7 1.7 8.0 4.3 2.3 8.7 8.3 
 
The observed sums were analysed for each time point separately. The standard analysis of 
count data employs a Poisson distribution. Such an analysis assumes that the variance equals 
the mean. A preliminary analysis reveals that there is more variation than according to a 
Poisson distribution. This phenomenon is known as over-dispersion. It is then convenient to 
assume, as an approximation, that the variance is proportional to the mean. The 
proportionality factor is then known as the over-dispersion factor. Here the over-dispersion 
factor is estimated by means of the Pearson statistic. Alternative analyses methods include the 
use of the negative binomial distribution or the lognormal distribution. The latter analysis 
amounts to first taking the logarithm and then doing a normal analysis of variance. However 
zero observations cannot be log-transformed and therefore, when there are observed zeroes, 
0.5 was added before taking logs. The negative binomial distribution assumes that the 
variance equals µ + ωµ2, and the lognormal distribution assumes that the standard error is 
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proportional to the mean (or equivalently the variance is proportional to µ2). Residual plots 
for the over-dispersed Poisson, negative binomial and lognormal analysis for each sampling 
date are generally satisfactory and do not indicate a clear preference for either analysis. Of 
special interest is the estimate of the dispersion parameter. These are given in Table 3-2 for 
each sampling date. The over-dispersion parameter for the Poisson becomes quite large for 
later sampling dates, indicating considerable over-dispersion.  

Table 3-2: Estimates of dispersion parameter for strawberry aphids data 2004  

Date Poisson 
Over-dispersion 

Negative binomial 
parameter 𝜔 

LogNormal  
Variance 

15-3 3.95 1.26 1.276 
23-3 3.07 0.96 1.120 
30-3 3.59 0.78 1.030 
06-4 1.69 0.31 0.781 
13-4 5.66 0.66 1.230 
20-4 5.62 0.86 1.337 
27-4 8.70 0.42 0.745 
03-5 11.77 0.60 1.183 
11-5 21.98 0.57 1.189 
18-5 23.78 0.51 0.886 
25-5 15.14 0.38 0.796 
31-5 15.29 0.46 0.790 

3.1.2 ENEA aphids on strawberry 2005 
Data for the 6th block are missing and therefore this block was omitted from the analysis. The 
mean number of aphids classified by the varieties on the 8 sampling dates is given in Table 
3-3. 

Table 3-3: Mean number of aphids for each variety in the ENEA strawberry experiment 2004 

Treat 03-5 10-5 16-5 24-5 31-5 06-6 13-6 20-6 
1 10.2 25.4 27.6 16.2 76.8 48.2 17.2 3.8 
2 4.6 6.6 27.2 22.8 38.0 12.4 6.6 2.8 
3 28.0 80.4 120.4 91.4 197.2 122.8 74.2 12.0 
4 8.6 27.2 23.8 29.4 79.0 39.0 22.0 10.8 
5 12.8 50.8 60.4 65.4 114.2 85.4 27.2 12.6 
6 9.0 38.0 89.2 73.2 80.8 40.2 15.0 6.2 
7 64.2 72.4 63.8 63.4 90.8 60.6 21.8 6.2 
8 8.0 32.2 27.6 28.2 57.0 18.6 16.4 8.8 
9 18.8 39.2 88.0 80.0 113.4 182.2 124.0 7.0 

10 20.4 56.2 45.8 23.2 47.8 30.4 10.6 1.2 

Residual plots for the Poisson are not satisfactory with increasing residuals with increasing 
fitted values. The plots for the negative binomial and the lognormal distribution are generally 
satisfactory. The estimates of the dispersion parameter is given in Table 3-4. 
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Table 3-4: Estimates of dispersion parameter for strawberry aphids data 2005  

Date Poisson 
Over-dispersion 

Negative binomial 
parameter 𝜔 

LogNormal  
Variance 

03-5 33.21 1.45 2.330 
10-5 57.90 1.01 1.972 
16-5 69.96 0.82 1.492 
24-5 71.93 0.99 1.974 
31-5 125.56 0.82 1.361 
06-6 107.82 0.91 1.562 
13-6 51.19 0.81 1.438 
20-6 8.59 0.60 0.942 

Again there is heavy over-dispersion as compared to the Poisson distribution. 

3.1.3 ENEA mites on strawberry 2004 
There are 19 out of 60 plots which do not have any mites at all during the sampling period. 
Up till May 3 there are at most 5 plots with a positive number of mites, and on the last four 
sampling dates there are respectively 11, 8, 20 and 25 plots (of totally 60 plots) with positive 
numbers of mites. Some counts are quite large, again revealing over-dispersion. Analysis of 
the counts for the last two sampling dates (25-5 and 31-5) gives a Poisson over-dispersion 
parameters of 3.48 and 2.26 respectively, while the index parameter (𝜔) of the negative 
binomial distribution is estimated as 1.75 and 0.77. The large over-dispersion factor for the 
experiment on 25-5 is mainly due to a count of 110 for treatment 5 in the first block. Residual 
plots are not very informative due to the large number of zeroes. This experiment might 
indicate that there are more zero observations then is predicted by a count distribution.  

3.1.4 ENEA mites on strawberry 2005 
Mites were only sampled on May 16 and 29 and again counts for the 6th block are completely 
missing. On May 16 the number of mites is low, with the notable exception of two plots, 
while at May 29 mites are observed on every plot. The over-dispersion factor for the Poisson 
analysis equals 6.95 and 13.84 respectively, while the index parameter (𝜔) of the negative 
binomial distribution is estimated as 1.75 and 0.37. The value of 1.75 is due to two large 
counts. The residual plots for the negative binomial distribution is more satisfactory than for 
the Poisson distribution, especially for the first sampling data.  

3.1.5 Conclusion Strawberry experiment 
Counts of aphids and mites generally have a large over-dispersion as compared to the Poisson 
distribution. The 2005 experiment reveals that the Poisson assumption, i.e. a variance which is 
proportional to the mean, is not realistic for aphids. An analysis employing the lognormal 
distribution seems generally acceptable although such an analysis has the disadvantage that 
zero counts do not fit in naturally. Furthermore it may seem unlikely that varieties with very 
small means would have the same proportionality factor for the variance as varieties with 
large means. The negative binomial distribution on the other hand scales naturally between a 
Poisson distribution for small means and something similar to the lognormal distribution for 
large means.  The index parameter 𝜔 of the negative binomial distribution ranges between 
0.31 and 1.75 for the data analysed here. The mites data obtained in 2004 has many zeroes, 
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some of which might not have happened by chance. It is therefore important. A simulation 
model should therefore have the ability to simulate excess zeroes.  

3.2 WU datasets White Cabbage 
A dataset on white cabbage was made available by Wageningen University. Four different 
non-GM cultivars of white cabbage were assessed in a randomized block design (Kos 2012, 
Chapter 4): Christmas Drumhead (CD) and Badger Shipper (BS) (Centre for Genetic 
Resources, CGN, Wageningen, The Netherlands), representing older, open pollinated, 
cultivars, and Lennox (Len) and Rivera (Riv) (Bejo Zaden BV, Warmenhuizen, The 
Netherlands), representing more recently cultivated, commercially grown, F1 hybrids.  

In two study years, 2008 and 2009, during 14 weeks, from week 23 (early June) until week 36 
(early September), central plants of each plot were monitored weekly for the presence of the 
following insect species: non-mining caterpillars and pupae of P. xylostella and pupae of its 
parasitoid Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae); colony size of B. 
brassicae aphids and other aphids; mummies (pupae of the parasitoid inside the host 
integument) of the aphid parasitoid Diaeretiella rapae McIntosh (Hymenoptera: Braconidae); 
larvae and pupae of the predator Episyrphus balteatus de Geer (Diptera: Syrphidae) and eggs, 
larvae and pupae of the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). 

We consider here the count data for the species for which data were available in both years: 
P. xylostella larvae and pupae (Pxl and Pxp), B. brassicae aphids (Bb), other aphids (Oa), 
Chrysoperla carnea eggs and larvae (Cce, Ccl), Episyrphus balteatus larvae and pupae (Ebl, 
Ebp), and other predatory hoverflies larvae and pupae (Ophl and Ophp).  In 2008 the nine 
central plants of each plot were monitored every week. In 2009 seven plants were monitored 
in weeks 23-29, and six plants in weeks 30-36. Counts were summed over plants per plot. 

3.2.1 Summary statistics 
The mean abundances per week are very different (Table 3-5). Relatively high mean numbers 
(10-75) are found for Pxl, Bb and Oa, but mean numbers are below 1 for the other responses. 
There are also large differences between cultivars, e .g. Bb mean abundance varies between 
1.5 on Len and 67 on CD. 

Table 3-5: Mean abundances 2008-2009, cabbage data  

cultivar  Pxl Pxp Bb Oa Cce 
Riv 6.36 0.64 1.49 21.24 0.31 
Len 7.84 0.62 5.70 39.43 0.62 
CD 12.60 0.95 67.16 181.50 1.14 
BS 13.23 0.93 11.60 58.74 0.82 

Mean 10.01 0.78 21.49 75.23 0.72 
cultivar Ccl Ebl Ebp Ophl Ophp 

Riv 0.5223 0.0268 0.2411 0.0000 0.0937 
Len 0.9062 0.0580 0.3214 0.0000 0.0938 
CD 0.6125 0.2741 1.2036 0.3098 0.6625 
BS 0.6464 0.0634 0.4527 0.0732 0.1821 

Mean 0.6719 0.1056 0.5547 0.0958 0.2580 
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Note that summed over the season (14 weeks) all mean abundances are 14 times as large, and 
therefore always above 1. 

There are also large differences between years (Table 3-6). Oa, Ccl and Ebp are far more 
abundant in 2008, while Pxl and Bb are far more abundant in 2009.  But this also varies per 
cultivar, e.g. Bb numbers on Riv are almost equal in both years. 

Table 3-6: Mean abundances per year, cabbage data  

Year 2008 
cultivar Pxl Pxp Bb Oa Cce 

Riv 1.91 0.5536 1.45 39.18 0.18 
Len 2.43 0.4643 1.84 74.66 0.53 
CD 1.78 0.6250 3.11 332.36 0.51 
BS 2.97 0.7857 2.06 97.93 0.38 

cultivar Ccl Ebl Ebp Ophl Ophp 
Riv 1.0268 0.0089 0.4821 0.0000 0.1875 
Len 1.7946 0.0446 0.6339 0.0000 0.1875 
CD 1.1429 0.0536 2.3661 0.5804 1.2946 
BS 1.2411 0.0268 0.8750 0.1250 0.3214 

Year 2009 
cultivar Pxl Pxp Bb Oa Cce 

Riv 10.82 0.7179 1.54 3.31 0.44 
Len 13.24 0.7679 9.55 4.20 0.72 
CD 23.42 1.2661 131.21 30.64 1.78 
BS 23.49 1.0661 21.14 19.54 1.25 

cultivar Ccl Ebl Ebp Ophl Ophp 
Riv 0.0179 0.0446 0.0000 0.0000 0.0000 
Len 0.0179 0.0714 0.0089 0.0000 0.0000 
CD 0.0821 0.4946 0.0411 0.0393 0.0304 
BS 0.0518 0.1000 0.0304 0.0214 0.0429 

 
Zero counts are common. The group below 0 in Figure 3-1 left represents the frequencies of 
count 0 for the 10 endpoints. Less frequent are counts between 1 and 10 (between 0 and 1), 10 
and 100 (between 1 and 2), 100 and 1000 (between 2 and 3), and above 1000 (above 3). 
Table 3-7 shows the fraction of the 32 plots that have a positive count. 
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Table 3-7: Fraction of plots with a positive count, cabbage data 

year-week Pxl Pxp Bb Oa Cce Ccl Ebl Ebp Ophl Ophp 
2008-23 0 0 0.59 1 0 0 0 0 0 0 
2008-24 0 0 0 0.72 0.41 0 0 0 0 0 
2008-25 0.22 0.03 0 0.78 0.50 0 0 0.09 0 0 
2008-26 0.87 0.06 0 0.88 0.41 0.06 0 0.16 0 0 
2008-27 1 0.41 0.50 1 0.16 0.41 0 0.25 0 0 
2008-28 1 0.87 0.97 1 0.16 0.69 0 0.69 0.03 0.06 
2008-29 1 0.94 0.97 1 0 0.75 0.06 0.75 0.03 0.25 
2008-30 0.87 0.84 1 1 0.03 0.72 0.19 0.78 0.09 0.19 
2008-31 0.41 0.47 0.63 1 0 0.25 0 0.62 0.28 0.38 
2008-32 0.22 0.16 0.62 1 0.03 0.47 0.09 0.56 0.31 0.53 
2008-33 0.09 0.06 0.37 0.87 0 0.31 0.06 0.19 0.22 0.22 
2008-34 0.03 0.09 0.28 0.72 0 0 0 0.13 0.06 0.06 
2008-35 0.03 0 0.09 0.66 0 0.03 0 0.09 0.25 0 
2008-36 0.06 0.03 0.09 0.59 0 0.03 0 0.06 0.19 0.16 

year-week Pxl Pxp Bb Oa Cce Ccl Ebl Ebp Ophl Ophp 
2009-23 1 0.12 0.16 0.87 0.06 0 0 0 0 0 
2009-24 0.62 0.94 0.91 0 0 0 0 0 0 0 
2009-25 1 0.66 0.09 0.72 0 0 0 0 0 0 
2009-26 1 0.78 0.31 0.91 0.12 0 0 0 0 0 
2009-27 1 0.47 0.62 1 0.12 0.09 0.19 0.03 0 0 
2009-28 1 0.41 0.62 0.87 0.28 0.03 0.25 0.03 0 0.03 
2009-29 1 0.50 0.75 0.75 0.47 0.09 0.28 0.03 0.06 0 
2009-30 0.84 0.22 0.78 0.47 0.66 0.03 0.12 0.09 0 0 
2009-31 0.50 0.28 0.69 0.25 0.50 0.03 0.22 0 0 0.06 
2009-32 0.22 0.12 0.56 0.12 0.38 0.16 0.16 0 0.03 0.03 
2009-33 0.06 0 0.53 0.06 0.41 0.06 0.03 0.03 0.06 0.03 
2009-34 0.03 0.06 0.53 0.03 0.28 0 0.06 0.03 0 0.06 
2009-35 0.09 0 0.44 0.03 0.09 0.03 0.09 0 0.03 0 
2009-36 0.12 0 0.47 0 0 0 0.16 0 0 0 

Mean  
All Weeks 0.51 0.30 0.49 0.65 0.18 0.15 0.07 0.17 0.06 0.07 

  
The row “Mean All Weeks” shows the mean fraction of positive counts for the ten endpoints 
(on average 27% across the ten endpoints). Only in 18 of 280 combinations (bold, 6%) all 32 
plots had a positive count. In 87 cases (italics, 31%) all 32 plots had a zero count. The 
distribution of the fractions in the table is given graphically in Figure 3-1, right. 

The conclusion is that for an analysis of these or similar data it is essential to have a method 
that can handle zero counts properly. 
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Figure 3-1: Distribution of log-transformed counts and of fraction of plots with positive counts. 
Colours represent the ten endpoints. 

   

Table 3-8 shows the over-dispersion factors (variance/mean) , each factor based on 32 plots. 
The results are also plotted against the means (excluding zero means) in Figure 3-2. 

 
Table 3-8: Over-dispersion factors (variance/mean) per year.week, cabbage data 

year-week Pxl Pxp Bb Oa Cce Ccl Ebl Ebp Ophl Ophp 
2008-23 - - 27.0 31 - - - - - - 
2008-24 - - - 41 17.3 - - - - - 
2008-25 1.3 1.0 - 103 8.1 - - 2.9 - - 
2008-26 1.4 1.0 - 116 2.3 3.3 - 0.9 - - 
2008-27 2.4 1.0 1.1 209 9.7 4.5 - 1.6 - - 
2008-28 4.1 1.4 1.4 446 1.4 3.4 - 3.4 1.0 1.0 
2008-29 2.0 1.1 2.0 1240 - 6.3 1.6 5.8 2.0 23.0 
2008-30 3.2 0.9 2.4 1785 4.0 5.6 1.1 4.6 0.9 14.2 
2008-31 2.8 1.1 1.8 509 - 7.6 - 3.3 2.3 18.4 
2008-32 1.4 0.9 1.7 69 1.0 4.2 0.9 2.1 1.9 2.0 
2008-33 1.4 1.0 1.5 60 - 1.8 1.0 1.7 1.3 0.8 
2008-34 1.0 0.9 1.8 57 - - - 0.9 1.0 1.0 
2008-35 2.0 - 0.9 35 - 1.0 - 1.4 1.2 - 
2008-36 1.0 1.0 0.9 868 - 1.0 - 1.6 1.7 0.9 
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year-week Pxl Pxp Bb Oa Cce Ccl Ebl Ebp Ophl Ophp 
2009-23 5.7 0.9 6.1 10 2.9 - - - - - 
2009-24 0.9 0.8 8.6 - - - - - - - 
2009-25 3.9 2.3 7.6 7 - - - - - - 
2009-26 5.0 3.5 44.4 36 2.9 - - - - - 
2009-27 12.5 1.7 147.8 140 4.8 0.9 1.1 1.0 - - 
2009-28 16.9 1.5 160.2 52 8.6 1.0 1.0 1.0 - 1.0 
2009-29 16.5 1.8 164.3 32 3.7 0.9 1.2 1.0 1.0 - 
2009-30 13.2 3.0 66.1 21 5.7 1.2 2.5 1.1 - - 
2009-31 2.4 1.8 81.2 14 11.4 1.2 2.3 - - 1.2 
2009-32 1.7 1.1 161.8 5 3.6 1.0 1.4 - 1.2 1.2 
2009-33 1.2 - 150.7 10 2.4 1.2 2.4 1.2 1.2 1.2 
2009-34 1.2 1.2 755.5 6 2.4 - 2.3 1.2 - 1.2 
2009-35 1.1 - 579.5 6 3.7 1.2 2.5 - 1.2 - 
2009-36 2.2 - 559.9 - - - 1.0 - - - 

 

Figure 3-2: Relation between dispersion factor and mean count, cabbage data. 

 
 
Generally over-dispersion factors are larger than one. In general factors increase with the 
mean. The largest over-dispersion is found for the most abundant species, Bb and Oa. Over-
dispersion could be due to differences between cultivars; therefore the over-dispersion per 
cultivar for these two species (each over-dispersion factor now based on 8 values) is given in 
Table 3-9. This shows that over-dispersion remains a n important issue also at the level of 
plots with the same cultivar. 
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Table 3-9: Over-dispersion factors (variance/mean) per year.week.cultivar, cabbage data  

year-week species Bb species Oa 
Riv Len  Riv Len  Riv Len 

2008-23 13.1 33.5 19.5 5.0 7.8 10.2 35.4 22.6 
2008-24 - - - - 52.5 14.2 38.8 5.8 
2008-25 - - - - 43.4 195.3 79.5 5.6 
2008-26 - - - - 21.3 138.5 99.5 26.8 
2008-27 0.9 0.7 2.0 0.9 19.1 169.8 183.2 40.5 
2008-28 2.4 0.7 2.3 0.6 37.9 157.0 371.2 125.2 
2008-29 1.9 1.5 1.1 3.1 41.6 52.5 1276.7 63.9 
2008-30 2.0 1.5 0.9 4.8 30.8 26.5 2369.5 116.4 
2008-31 1.0 0.5 0.8 3.8 30.3 7.5 493.3 583.2 
2008-32 0.6 0.6 1.2 2.0 2.6 8.4 29.2 27.6 
2008-33 - 0.6 1.1 1.5 1.5 9.1 25.1 30.3 
2008-34 1.0 1.0 1.1 2.0 1.8 13.3 38.9 13.1 
2008-35 - - 0.9 1.0 - 1.6 14.9 16.1 
2008-36 - - 0.9 1.0 0.9 2.3 832.1 25.7 

year-week species Bb species Oa 
Riv Len CD BS Riv Len CD BS 

2009-23 4.0 - 5.7 - 20.0 1.8 8.2 8.2 
2009-24 10.0 8.7 8.7 8.2 - - - - 
2009-25 - 10.0 5.0 1.0 3.5 9.4 6.3 7.4 
2009-26 1.8 60.0 12.9 48.8 10.8 18.7 23.1 35.2 
2009-27 8.3 97.4 178.5 26.9 11.6 16.9 116.4 12.8 
2009-28 3.6 154.4 95.2 225.9 2.9 3.5 20.4 28.8 
2009-29 9.2 94.1 109.1 266.9 1.1 3.6 20.0 6.3 
2009-30 8.0 19.6 34.2 24.6 2.7 - 23.1 6.9 
2009-31 1.2 2.7 20.7 4.2 - - 6.0 6.0 
2009-32 - 4.9 127.6 15.7 - - 5.1 4.9 
2009-33 1.2 1.2 87.4 9.0 - - 6.0 12.0 
2009-34 6.0 - 505.8 10.4 - - 6.0 - 
2009-35 - - 376.8 10.8 - - 6.0 - 
2009-36 - - 345.3 26.0 - - - - 

 

3.2.2 Fitting some possible models 

There are many possible statistical models for count data. The work in this chapter was 
guided by making the following short inventory of models (a fuller treatment of statistical 
distributions for counts can be found in Chapter 0). In this list Var stands for variance, µ for 
the mean of the distribution, and ~ indicates proportionality. 
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1. Data transformation followed by an analysis based on the normal distribution 
a. Square root transformation. Var ~ µ 
b. Logarithmic transformation. Var ~ µ2 

Zeroes present a problem for the log transform. Some common approaches: 
i. Analyse log(N+1) or log(N+0.5) 

ii. Replace zeroes by 0.5 
2. Generalised Linear Models (GLMs) 

a. Poisson.  Var = µ 
b. Poisson corrected for over-dispersion.  Var ~ µ 
c. Negative Binomial. Var = µ + kµ2 
d. Gamma. Var ~ µ2. Zeroes present a problem for the Gamma distribution.  A 

possible approach is to replace zeroes by 0.5 
3. Zero-excess models 

a. Zero-Inflated models, mixture of spike at zero and distribution 
i. Zero-Inflated Poisson (ZIP)  

ii. Zero-Inflated Negative Binomial (ZINB) 
b. Two-part, conditional (or hurdle) models 

i. Binomial + Truncated Poisson (excluding the zeroes) 
ii. Binomial + Truncated Negative Binomial (excluding the zeroes) 

4. Generalised Linear Mixed Models (GLMMs) 
a. Modelling correlated counts 
b. Modelling random effects 

5. Combinations of the above 
6. Binomial model on simplified data (data reduced to absence/presence) 

Some first comparisons are made using models  
• 1a (square root transformed counts),  
• 1bi (log(N+1) transformation),  
• 2b (Poisson corrected for over-dispersion) and  
• 2c (Negative Binomial).  

The model terms fitted are:  plot+(year/week)*cultivar in all cases. Normal plots and 
residual plots for the following three endpoints are shown: 

• Oa which has high counts (mean count 75), see Figure 3-3 
• Pxl which has moderate counts (mean count 10), see Figure 3-4 
• Cce which has low counts (mean count 0.7), see Figure 3-5 
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Figure 3-3: Normal and residual plots for Oa. Comparison of four models. 

 

Differences are largest for endpoint Oa, i.e. the high count case (Figure 3-3). The normal plots 
deviate most from a straight line for the square root transformation and the overdispersed 
Poisson model; moreover the residual plots show larger residuals for larger fitted values. So 
clearly a model in which the variance is proportional to the mean is not appropriate for these 
data. Normal and residual plots for the lognormal and the negative binomial model are 
satisfactory; the residual plot of the negative binomial model is to be preferred with a more 
homogeneous spread of residuals. 

In the moderate (Figure 3-4) and low (Figure 3-5) count cases it is less obvious which model 
to choose. However, the large frequency of zeroes makes any model that needs an ad-hoc 
approach to replace these values, such as the log transformation, unattractive. We conclude 
that among the four models the negative binomial model has the best performance to be 
applicable in many cases, both with high and low counts. Other models, such as the zero-
excess models still have to be investigated. 

The final modelling choice will be made later in the project based on studies using the 
simulation model described in the next chapters. 
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Figure 3-4: Normal and residual plots for Pxl. Comparison of four models. 

   

 
Figure 3-5: Normal and residual plots for Cce. Comparison of four models. 
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4 Statistical distributions for counts and presence/absence data 
As was seen in previous chapters, typical environmental data are counts or presence/absence 
data. The basic distribution for counts without a formal upper limit, is the Poisson 
distribution. Presence/absence data arise when for instance the number of plants is counted on 
which an organism is present. Such data can only take the values 0 up to the total number of 
plants, and one might also think of such data as percentages. The basic distribution for 
presence/absence data is the binomial distribution. Clumping or mixing might give rise to 
over-dispersed distributions and some of these are considered here for both the Poisson and 
the binomial distribution. Finally the number of zero observations can be larger than predicted 
by the count distribution. This is termed excess-zeros and this class of distributions is 
described in the final paragraph of this chapter. 

4.1 Poisson distribution 
The basic distribution for counts is the Poisson distribution. The Poisson distribution arises 
when events occur independently of each other but at a fixed rate in time or space. The 
number of counts in a fixed time- or space-interval then follows a Poisson distribution. As a 
simple example consider N randomly drawn  points in a unit square. Further suppose that the 
unit square is divided in K cells with equal area by a regular grid. The number of points in 
each cell then follows a Poisson distribution with mean N/K. An example of this is given in 
Figure 4-1(a) in which 50 points with random x- and y-coordinates are depicted. The number 
of points in each cell in this example equals, running from top left to bottom right, 1,3,1,3,2,   
2,2,2,4,0,   1,1,4,5,1,   3,1,2,0,1,   1,1,3,0,5. The mean of the counts equals 2 and the variance 
equals 2.16. This is very close to the theoretical variance which equals the mean of the 
Poisson distribution. 
 
Figure 4-1: (a) Example of a spatial Poisson process with 50 randomly drawn points in a unit 

square and 25 cells defined by a regular grid, and (b) example of a spatial process 
with 50 points which are clumped.  
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The probabilities of the Poisson distribution with positive mean 𝜇 are given by 

 𝑃(𝑋 = 𝑥) = 𝑒−𝜇
𝜇𝑥

𝑥!
         𝑥 ≥ 0 (1) 

The mean and variance of the Poisson distribution both equal 𝜇 and the skewness of the 
distribution equals 1 √𝜇⁄ . Examples of three Poisson distributions are given in Figure 4-2. 
 
Figure 4-2: Examples of three Poisson distributions with means 1, 4 and 10. 

  

It is clear that the Poisson distribution becomes more symmetric as the mean increases. For 
large 𝜇 the distribution is well approximated by the normal distribution. The variance 
stabilizing transformation is √𝑋 in the sense that for large 𝜇 the mean of the transformed 
stochastic variable is 𝔼�√𝑋� ≈ √𝜇 and the variance 𝕍�√𝑋� ≈ 1 4⁄ , see McCullagh and 
Nelder (1989). The square root transformation is sometimes used for statistical inference 
based on the normal distribution rather than on the Poisson distribution.  

4.2 Over-dispersion relative to the Poisson distribution 
The Poisson distribution assumes a fixed rate of events in time or space. However frequently 
this rate might vary in different time- or space-intervals. In the spatial context this gives rise 
to what is called clumping, i.e. points tend to clump together. An example of this is given in 
Figure 4-1(b). The number of points in each cell now equals, again running from top left to 
bottom right,  5,1,0,0,0,   1,1,1,0,4,   1,0,2,7,0,   1,4,2,3,1,   0,5,1,3,7. The mean of the counts 
equals 2 and the variance equals 4.75 which is much larger than the mean. A common way to 
model this is to assume inter-subject variability, also called mixing. It is then assumed that a 
count 𝑋 follows a Poisson distribution with mean 𝑍, where 𝑍 itself is a random variable with 
mean 𝜇 and variance 𝜎2. The marginal mean and variance of the distribution of 𝑋 is then 
given by 

 𝔼(𝑋) = 𝜇     and     𝕍(𝑋) = 𝜇 + 𝜎2 (2) 

Since 𝜎2 is a positive variance parameter this results in a distribution with a variance larger 
than the mean and this is termed over-dispersion. Also, Feller (1943) has shown that the 
probability of zero in a mixed Poisson distribution is greater than the probability of zero in an 
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ordinary Poisson distribution with the same mean. There are various ways to specify the 
mixing distribution of 𝑍 and the most common ones are given below. 

4.2.1 Over-dispersed Poisson distribution 
Suppose that the variance of 𝑍 is proportional to the mean such that 𝜎2 = (𝜔 − 1)𝜇 where 
𝜔 > 1. The marginal variance of 𝑋 is given by equation (2) which results in 𝕍(𝑋) = 𝜔𝜇. So 
in this case the variance of 𝑋 itself is also proportional to the mean. Further assuming that 𝑍 
follows a gamma distribution with mean 𝜇 and variance (𝜔 − 1)𝜇 leads to a special form of 
the negative binomial distribution, with 𝜙 = (𝜔 − 1)−1 for ease of notation: 

 𝑃(𝑋 = 𝑥) =  
Γ(𝑥 + 𝜙𝜇)
𝑥!  Γ(𝜙𝜇) 

 
𝜙𝜙𝜇

(1 + 𝜙)𝑥+𝜙𝜇          𝑥 ≥ 0 (3) 

Figure 4-3: Comparison of the Poisson and the over-dispersed Poisson distribution. 

 
  
This distribution will be named over-dispersed Poisson in order to distinguish it from the 
more common form of the negative binomial distribution which is given in the next section. 
The skewness of this distribution equals (2𝜔 − 1) √𝜔𝜇⁄ , which shows that the over-dispersed 
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Poisson distribution becomes symmetric less quickly than the Poisson distribution as 𝜇 
increases. Cumulative probabilities can be calculated directly by means of the regularized 
incomplete beta function, i.e. 𝑃(𝑋 ≤ 𝑥) = 𝐼𝜔−1(𝜇 (𝜔 − 1)⁄ , 𝑥 + 1). Figure 4-3 shows some 
examples of the over-dispersed Poisson distribution.  
 
For modest amounts of over-dispersion, the difference between maximum likelihood 
estimates based on (3) and based on the Poisson likelihood (1) may be neglected (McCullagh 
and Nelder, 1989). Also, using the Poisson likelihood, the dispersion parameter can be 
estimated by the Pearson Chi-squared statistic or the residual deviance after a Poisson fit. The 
standard errors of the Poisson maximum likelihood estimates can then be easily adjusted by 
multiplication with the squared root of the dispersion parameter. This is the so-called quasi 
likelihood approach (McCullagh and Nelder, 1989). This approach is quite popular, and it is 
therefore that the over-dispersed Poisson distribution is not frequently used. It is however a 
convenient vehicle to simulate over-dispersed counts. 

4.2.2 Negative binomial distribution 
The negative binomial distribution arises when the mixing distribution 𝑍 follows a gamma 
distribution with mean 𝜇 and variance 𝜔𝜇2. The marginal mean of 𝑋 is then again 𝜇 and the 
variance equals 𝜇 + 𝜔𝜇2. The probability distribution is given by what is generally termed the 
negative binomial distribution 

 
𝑃(𝑋 = 𝑥) =  

Γ(𝑥 + 𝜔−1)
𝑥!  Γ(𝜔−1) 

 �
𝜔𝜇

1 + 𝜔𝜇
�
𝑥

 (1 + 𝜔𝜇)−𝜔−1         𝑥 ≥ 0 
(4) 

The skewness of the negative binomial distribution equals (2𝜔𝜇 + 1) �(1 + 𝜔𝜇)𝜇⁄ . 
Cumulative probabilities can be calculated directly by means of the regularized incomplete 
beta function, i.e. 𝑃(𝑌 ≤ 𝑦) = 𝐼(1+𝜔𝜇)−1(𝜔−1,𝑦 + 1). Some examples of the negative 
binomial distribution are given in Figure 4-4 along with a Poisson distribution with the same 
mean. This shows that the negative binomial distribution with large dispersion parameter 𝜔 
has a large zero probability and a rather flat tail. 
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Figure 4-4:  Comparison of the Poisson and the negative binomial distribution. 

  
 

4.2.3 Poisson-Lognormal distribution 
In Poisson regression it is common to introduce random effects 𝑒 on the scale of the linear 
predictor, i.e. to write log(𝜇) = 𝛼 + 𝑒,  in which 𝑒 follows a normal distribution with mean 0 
and some variance. This is equivalent to assuming that 𝑍 follows a lognormal distribution 
with mean, say 𝜆, and variance say 𝜎2. For obvious reasons this distribution can be termed 
Poisson-Lognormal. The mean and variance of the marginal distribution are given below. 
Note that the mean is not equal to exp(𝜆). 

 𝔼(𝑋) = exp �𝜆 + 1
2𝜎

2�       and     𝕍(𝑋) = 𝔼(𝑋) + (exp(𝜎2) − 1)𝔼2(𝑋) (5) 

This is thus the same variance function as the negative binomial distribution. Indeed writing 
𝜎2 = log(𝜔 + 1) and 𝜆 = log(𝜇) − 1

2 log(𝜔 + 1), the mean and variance of the negative 
binomial distribution are obtained, i.e. 𝔼(𝑋) = 𝜇 and 𝕍(𝑋) = 𝜇 + 𝜔𝜇2. Probabilities can be 
obtained by integrating out the random effect. There is no analytic solution to the integral, but 
a very good numerical approximation can be obtained by what is called Gauss-Hermite 
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integration. This approximates the integral by a weighted sum of a limited number of function 
evaluations. In this case, with 𝜂𝑗 the so-called Gauss-Hermite nodes and 𝑤𝑗 the accompanying 
weights the Poisson-Lognormal probabilities can be approximated in the following way 

 𝑃(𝑋 = 𝑥) =  �
𝑤𝑗
√𝜋

 𝑃 �𝑌 = 𝑥 | 𝑌 ~ Poisson �exp�√2𝜎 𝜂𝑗 + 𝜆���
𝑗

 (6) 

Although the mean and variance of the negative binomial and Poisson-Lognormal are 
equivalent, the distributions can be quite different for large 𝜇 and 𝜔 as is shown in Figure 4-5. 
Note that for small 𝜇 there is hardly a difference between the Poisson-Lognormal and the 
negative binomial distribution, although the difference increases for larger 𝜔 with a larger 
zero probability for the negative binomial distribution.  
  
Figure 4-5: Negative binomial distribution (grey) and Poisson-lognormal distributions (black) 

with the same mean 𝝁 and variance 𝝁 + 𝝎𝝁𝟐. 
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4.3 Binomial distribution 
The most familiar example of a binomial distribution is provided by counting the number of 
heads in successive tosses of a coin. Assuming that the, say n, tosses are independent and that 
the probability of a head equals 𝜋, the total number of heads follows a binomial distribution 
with probability 𝜋 and so-called binomial denominator n. In the AMIGA context this 
distribution may arise when, rather than counting organisms, the presence or absence of 
organisms is recorded. The response might then be the number of plants on which a specific 
organism is present for each experimental unit. The probabilities of the binomial distribution 
are given by 

 𝑃(𝑋 = 𝑥) = �𝑛𝑥� 𝜋
𝑥  (1 − 𝜋)𝑛−𝑥         𝑥 ≥ 0 (7) 

The mean of the binomial distribution is given by 𝑛𝜋 and the variance equals 𝑛𝜋(1 − 𝜋). The 
skewness equals (1 − 2𝜋) �𝑛𝜋(1 − 𝜋)⁄  which shows that the distribution is symmetric for 
𝜋 = 0.5. Examples of the binomial distribution are given in Figure 4-6. 

Figure 4-6: Examples of three binomial distributions with n=16 and 𝝅 = 0.1, 0.2 and 0.5. 

  

4.4 Over-dispersion relative to the Binomial distribution 
Over-dispersed binomial distributions are obtained by assuming that the number of successes 
X follows a binomial distribution with binomial denominator n and probability of success Z 
where Z itself follows some statistical distribution with mean 𝜋 and some variance 𝜎2. It 
follows that the marginal mean of X itself equals 𝑛𝜋 and the variance equals 𝑛𝜋(1 − 𝜋) +
𝑛(𝑛 − 1)𝜎2 which is larger than the variance of the binomial distribution. Note that, since Z 
is a probability, its distribution must be defined on the interval (0,1). The most popular choice 
for Z is the beta distribution which results in the so-called beta-binomial distribution. An 
alternative is to assume that the logit transform of Z follows a normal distribution. Details of 
both distributions are given below.  

4.4.1 Beta-Binomial distribution 
The beta-binomial distribution arises when it is assumed that the probability of success of a 
binomial distribution itself follows a Beta(𝛼,𝛽) distribution. The beta distribution is defined 
on the interval (0,1). A convenient re-parameterization is given by 𝜋 = 𝛼 (𝛼 + 𝛽)⁄  and 
𝜑 = 1 (𝛼 + 𝛽 + 1)⁄ . The mean of the beta-binomial distribution is then given by 𝑛𝜋 and the 
variance is given by 𝑛𝜋(1 − 𝜋)[1 + (𝑛 − 1)φ]. When the number of binomial trials is equal 
across experimental units, the term between squared brackets is constant and we can write 
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𝜔 = [1 + (𝑛 − 1)φ]. It follows that the variance is proportional to the binomial variance, i.e. 
the variance equals 𝜔 𝑛𝜋(1 − 𝜋) in which 𝜔 is an over-dispersion parameter. Since 0 < 𝜑 <
1, the over-dispersion parameter 𝜔 must be in the interval (1,𝑛). In this case data can be 
easily analysed by the quasi likelihood approach, see the over-dispersed Poisson distribution. 

Some examples of the beta-binomial distribution are given in Figure 4-7 along with a 
binomial distribution with the same mean. This shows that for large values of 𝜔 the range of 
possible outcomes is extended. However for very large values of 𝜔 the distribution becomes 
bath-tub like with large probabilities for outcomes 0 and n and small probabilities for 
intermediate values. 

Figure 4-7: Comparison of the binomial and the beta-binomial distribution for 𝒏 = 𝟏𝟔. 

  

4.4.2 Binomial-Logitnormal distribution 
In logistic regression, i.e. regression with the binomial distribution, it is common to introduce 
random effects 𝑒 on the scale of the linear predictor, i.e. to write logit(𝜋) = 𝛼 + 𝑒 in which 𝑒 
follows a normal distribution with mean 0 and some variance 𝜎2. This is equivalent to 
assuming that 𝑍 follows a logit-normal distribution. For obvious reasons this distribution can 
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be termed binomial-logitnormal. Unfortunately the mean and variance of the logit-normal 
distribution cannot be written in analytical form, and this is thus also the case for the 
binomial-logitnormal distribution itself. Note however that the mean is not given by 
𝑛 logit-1(𝛼). Probabilities can be obtained by integrating out the random effect. There is no 
analytic solution to the integral, but a very good numerical approximation can be obtained 
again by Gauss-Hermite integration: 

 𝑃(𝑋 = 𝑥) =  �
𝑤𝑗
√𝜋

 𝑃 �𝑌 = 𝑥 | 𝑌 ~ Binomial �𝑛, logit−1 �√2𝜎 𝜂𝑗 + 𝛼���
𝑗

 (8) 

in which 𝜂𝑗 are the so-called Gauss-Hermite nodes and 𝑤𝑗 the accompanying weights.  

Figure 4-8: Comparison of the beta-binomial (grey) and binomial-logitnormal (black) 
distributions for 𝒏 = 𝟏𝟔 with the same mean 𝒏𝝅 and variance 𝒏𝝎𝝅(𝟏 − 𝝅). 

  
 
Figure 4-8 compares the binomial-logitnormal distribution with the beta-binomial distribution 
for parameter values which yield the same mean and variance. This shows that, for 𝜋 = 0.1 
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and 𝜋 = 0.2, the beta-binomial distribution has a somewhat larger zero probability and a 
smaller probability for values close to zero. For the symmetric case 𝜋 = 0.5 there is hardly any 
difference between the two distributions. 

4.5 Excess-zeros distribution 
Although the over-dispersed count distributions have a larger zero probability than the 
corresponding Poisson or binomial distribution, the number of zero observations can still be 
larger than predicted by the count distribution. This is termed excess-zeros or zero-inflated 
counts. Examples of situations with  excess-zeros are given by Cunningham and Lindenmayer 
(2005), Sileshi (2008) and Lewin et al (2010). Excess zeros can be of interest because zero 
counts frequently have special status. For example, in counting non-target organisms on 
plants, a plant may have none of them either because the plant is of no interest whatsoever to 
the organism, or simply because it so happens by chance that there are no organism on the 
plant. This is the distinction between structural zeros, which are inevitable, and sampling 
zeros which occur by chance. A common model employs this distinction by assuming that a 
proportion 𝛿 of the plants have a structural zero and the remaining proportion (1 − 𝛿) of 
plants follows one of the count distributions given above. The zero-inflated distribution for 
the resulting count 𝑌 is then given by  

 𝑃(𝑌 = 𝑦) =  �
  𝛿 + (1 − 𝛿)𝑃𝑐(𝑋 = 0)            𝑦 = 0
  
  (1 − 𝛿)𝑃𝑐(𝑋 = 𝑦)             𝑦 > 0

 (9) 

in which 𝑃𝑐(𝑋 = 𝑥) is the distribution of the counts. Note that the probability of observing a 
zero is given by the probability 𝛿 of obtaining a structural zero plus the probability of 
obtaining a zero by chance. Although in this definition it is possible that 𝛿 < 0, we will 
further assume that 0 ≤ 𝛿 < 1.  
 
Figure 4-9:  (a) Poisson distribution with mean 4 and (b) zero-inflated Poisson distribution with 

the same mean and a zero-inflated probability equal to 0.3. 

  
 
An example of a Poisson distribution and its zero-inflated counterpart is given in Figure 4-9. 
The relative probabilities for positive counts of the zero-inflated distribution are equal to the 
relative probabilities of the ordinary distribution. Figure 4-9b clearly shows the need for an 
excess-zero distribution because there is a large spike at zero. However, having a lot of zeroes 
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in itself does not necessarily mean that a zero-inflated model is needed. Examples of this are 
given in Figure 4-4 with 𝜔 = 4. 
The mean of a zero-inflated Poisson distribution equals 𝜇(1 − 𝛿) and its variance equals 
𝜇(1 − 𝛿)(1 + 𝛿𝜇). The variance of the zero-inflated Poisson distribution can thus not be 
written as a function only of its mean and the same holds for the other zero-inflated count 
distributions. Regression models based on the zero-inflated Poisson distributions were 
introduced by Lambert (1992) who considered simultaneous modelling of 𝜇 and 𝜋 which are 
related to possibly different sets of covariates. Greene (1994) brought regression modelling to 
the zero-inflated negative binomial distribution. Hall (2000) and Vieira et al (2000) seem to 
be the first papers which employ a zero-inflated binomial model. Finally, Cheung (2006) uses 
a zero-inflated beta-binomial model to analyse cognitive function test scores of Indonesian 
children. 
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5 General principles of the simulation tool 

5.1 AMIGA simulation projects 
The AMIGA simulation tool consists of 

• A Windows form interface written in C# which can be used to specify all the 
simulation settings. 

• A simulation program written in the R package (R Core Team, 2012) which performs 
the simulation itself. This requires installation of the R package. Moreover the R 
packages MASS and XML are needed to perform a simulation. 

The Windows form interface stores all simulation settings in a so-called project. Project 
actions are given at the bottom of the Windows interface: 

 
The Default button opens a default project with the most simple simulation settings. This is a 
good starting point. The Save button can be used to save the current project in a XML file. 
The name of this XML file equals the name of the project (given in the title bar) appended 
with the file extension “.ami”. The project can be saved in a different file by using the Save As 
button which also enables the user to specify a different directory. Previously saved projects 
can be loaded by means of the Load button. Finally the Simulate button can be used to first 
save the current settings to its project file and then performing the requested simulation. The 
Single checkbox can be employed to request that all the simulated experiments should be 
written to (a) a single file when checked, or (b) to separate files when unchecked. In the 
former case the simulated data will be written to a single CSV file which has the same name 
as the project and which will reside in the same directory. In the latter case the separate CSV 
files will be named “Simulation-#.CSV” where # is a serial number, and the files will be 
saved in a subdirectory below the directory where the project file is stored; this subdirectory 
has the same name as the project. The Open checkbox can be used to open the single or first 
CSV file. Note that pushing the Simulation button again will automatically delete all previous 
simulation files, irrespective of the setting of the Single checkbox. Finally, running the 
Windows form program will open the last saved or loaded project. 

5.2 General settings of the simulation tool 
The most simple use of the simulation tool is for a single trial with a single measurement for 
each experimental unit. The general settings of the simulation tool for this situation are given 
below, assuming that a count is recorded rather than presence/absence data. Section 6.1 gives 
a formal description of this situation. In the context of the AMIGA project an experiment will 
minimally consist of a genetically modified plant variety (GMO) and a conventional non-
GMO comparator which are both replicated a number of times. When there is no blocking, no 
excess zeroes and only a single measurement, simulating such an experiment only requires 
specification of the mean 𝜇 of the count distribution for both the GMO and the comparator. 
Adding blocking to this requires specification of a random blocking effect. It is natural and 
common to introduce blocking effects on the natural log scale, i.e. 
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log(𝜇) = (variety effect) + (blocking effect) 
since this ensures that the mean 𝜇 is always positive. Note that this also requires that the 
variety effect of the GMO and the comparator are both specified on the natural log scale. 
Likewise, using the logit transformation for specification of the excess zeroes probability 𝛿 
ensures that this probability is always in the interval (0,1): 

logit(𝛿) = (variety effect) + (blocking effect) 
So in the simulation model all effects will be introduced on the log scale for counts and on the 
logit scale for probabilities.  
 
In addition to the GMO and the comparator other varieties might be introduced in the 
experiment. These might be other comparators or other GMOs, or alternatively the GMO 
and/or comparator itself which are treated with for instance herbicides. Although the latter are 
not varieties but rather treatments, these will also be termed additional varieties in the 
simulation tool. A special case is an experiment in which the GMO and its comparator are to 
be compared with a group of reference varieties which have a history of safe use (Van der 
Voet et al, 2011). In this case the individual reference varieties themselves are not of interest, 
but they are used to derive baselines or equivalence limits. The reference varieties in the 
experiment might thus be considered as representing a population of reference varieties. It is 
then natural to assume that the (logarithm of the) mean of each reference variety is drawn 
from a statistical distribution. For convenience a normal distribution is used for this. The 
difference between additional and reference varieties is that for each additional variety a 
variety effect must be specified, whereas for reference varieties only a common variety effect 
and an associated variance must be specified. The number of additional and reference 
varieties can be specified at the top of the Windows interface: 

 
These settings results in a table of log-means given at the right and 
requires a user to specify a mean of the count distribution for the 
GMO, the comparator, two additional varieties, and a common mean 
and variance for four reference varieties. In each simulated trial the 
mean of the GMO, comparator and additional varieties will be set accordingly, while the 
mean of the four reference varieties will vary from trial to trial. When employing a REF 
Variance equal to zero as in the example above, all the reference varieties will have the same 
mean as specified by the REF Mean value. 
 
The distribution of the endpoint can be specified in the Distribution of Counts groupbox.  
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The distribution can be either Poisson, OverdispersedPoisson, NegativeBinomial or 
PoissonLogNormal for counts, or for presence/absence data Binomial, BetaBinomial or 
BinomialLogitNormal. The latter three distributions requires specification of the binomial 
denominator n. The over-dispersed distributions involve an over-dispersion parameter which 
is linked to the variance of the distribution as given in Table 5-1 (also see Chapter 0). For the 
BinomialLogitNormal distribution the over-dispersion parameter is the variance of the extra 
random effect on the logit scale (see  paragraph 4.4.2). 
 
Table 5-1: Mean and variance of the various distributions and definition of the over-dispersion 

parameter 𝝎. 

Distribution Mean Variance 
Poisson 𝜇 𝜇 
Over-dispersedPoisson 𝜇 𝜔 𝜇 
NegativeBinomial 𝜇 𝜇 + 𝜔 𝜇2 
PoissonLogNormal 𝜇 𝜇 + 𝜔 𝜇2 
Binomial 𝑛 𝜋 𝑛 𝜋 (1 − 𝜋) 
BetaBinomial 𝑛 𝜋 𝜔 𝑛 𝜋 (1 − 𝜋) 
BionomialLogitNormal Not available analytically 

 
Checking the Excess Zeroes box will result in excess zero count distributions which requires 
specification of excess zero probabilities 𝛿 in the same way as the log-means. 
 
The design of an experiment can be either completely randomized or randomized blocks. In 
either case the number of replications or blocks must be specified. Checking the Randomized 
Block radio button displays a table in which the variance of the block effects must be 
specified for both the counts and the excess zeroes when required. 

  
The number of datasets to simulate and the seed for the random number generation can be 
specified in the Simulation Settings groupbox. A random number seed of zero uses the current 
computer time to form a seed. The default random number generator of the R package is used, 
which is Mersenne-Twister. 
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6 Simulation model for single trials 

6.1 Single trial with one measurement per experimental unit 
The mean 𝜇𝑖𝑗 of the observed count of variety i in replicate or block j, or of the success 
probability 𝜋𝑖𝑗 for presence/absence data, is given by: 

 
log�𝜇𝑖𝑗� = 𝑎𝑗 + 𝛼𝑖 

logit�𝜋𝑖𝑗� = 𝑎𝑗 + 𝛼𝑖 
(10) 

where 𝑎𝑗~N(0,𝜎𝑎2) are independent random block effects, and 𝛼𝑖 is a fixed variety effect. The 
variety effects of reference varieties are generated by means of 𝛼𝑖~𝑁(𝛼,𝜎𝛼2), and this is done 
separately for each simulated trial. The log link ensures that the mean 𝜇𝑖𝑗 is larger than zero, 
and the logit link ensures that 𝜋𝑖𝑗 is in the interval (0,1). For a completely randomized 
experiment the random block effects 𝑎𝑗 are all set to zero, which is equivalent to setting 
𝜎𝑎2 = 0. Data are subsequently simulated by employing the selected count distribution.  
When excess zeroes are requested a similar model is used for the excess zero probability: 

 logit�𝛿𝑖𝑗� = 𝑏𝑗 + 𝛽𝑖 (11) 

where 𝑏𝑗~N(0,𝜎𝑏2) are independent random block effects, and 𝛽𝑖 is a fixed variety effect. The 
logit link ensures that the excess-zero probability 𝛿𝑖𝑗 is in the interval (0,1). The variety 
effects of reference varieties are again generated by means of 𝛽𝑖~𝑁�𝛽,𝜎𝛽2�, and this is done 
separately for each simulated trial. It is assumed that the random block effects 𝑎𝑗 and 𝑏𝑗 are 
independent.  

6.2 Single trial with repeated measurements 
Non target organism at the same experimental units are frequently sampled at different points 
in time. Selection of the Repeated Measurements radio button will simulate such data: 

   
The number of time points T can be specified; it is assumed that time points are equidistant, 
i.e. 1, 2, …, T. The time effect can be either constant, linear or quadratic in time, all on the 
transformed scale, and this can be set separately for the mean of the counts or for the success 
probability and also for the excess zero probability. Moreover the repeated observations on 
the same experimental unit can be independent or can be correlated. This is the purpose of the 
Mode setting: the setting None represents independence, the setting ArOne represents an 
autoregressive model of order one in time, and the setting Equal results in equal correlations 
between the repeated measures. Formally the mean of variety i in block j at time point t is 
given by 



36 
 

 log�𝜇𝑖𝑗𝑡� = 𝑎𝑗 + 𝑓𝑖(𝑡) + 𝑣𝑖𝑗𝑡 (12) 

where 𝑓𝑖(𝑡) is a polynomial up to order 2 in time t for treatment i, which replaces the fixed 
variety effect 𝛼𝑖 in (10). The extra random effect 𝑣𝑖𝑗𝑡 in (12) specifies the correlation between 
repeated measures; see below.  
A constant time effect is given by 𝑓𝑖(𝑡) = 𝛼𝑖, a linear time effect by 𝑓𝑖(𝑡) = 𝛽𝑖0 + 𝛽𝑖1𝑡, and a 
quadratic time effect by 𝑓𝑖(𝑡) = 𝛽𝑖0 + 𝛽𝑖1𝑡 + 𝛽𝑖2𝑡2. An alternative parameterization for the 
second order polynomial with more meaningful parameters is given by  

 𝑓𝑖(𝑡) = 𝛽𝑖,𝑚𝑎𝑥 − �𝑡 − 𝛽𝑖,𝑜𝑝𝑡�
2
�2𝛽𝑖,𝑡𝑜𝑙��  (13) 

where the maximum 𝛽𝑖,𝑚𝑎𝑥 is attained for the optimal time point 𝛽𝑖,𝑜𝑝𝑡 and the parameter 
𝛽𝑖,𝑡𝑜𝑙 represents the width of the quadratic curve, also called the tolerance. This latter 
parameterization is used by the simulation tool. For a positive tolerance the parabola has a 
maximum, while for a negative tolerance it has a minimum.  
The vector of random effects 𝒗𝑖𝑗 = �𝑣𝑖𝑗1, … , 𝑣𝑖𝑗𝑇� is assumed to follow a multivariate normal 
distribution, i.e. 𝒗𝑖𝑗~MN(0,𝜎𝑣2𝑉) where 𝑉 is a T x T symmetric correlation matrix. The value 
of 𝜎𝑣2 can be specified by the Variance textbox in the Windows form and the Mode and 
Correlation settings specifies the matrix 𝑉 as follows: 

1. Mode = None: no extra variability as given by 𝜎𝑣2 = 0. 
2. Mode = Equal: equal correlation across time by setting 𝑉𝑘𝑘 = 1 and 𝑉𝑘𝑙 = 𝜌 for 𝑘 ≠ 𝑙  
3. Mode = ArOne: autoregressive correlation across time by setting 𝑉𝑘𝑙 = 𝜌|𝑘−𝑙|. 

It is assumed that the block effect 𝑎𝑗 and the time effect 𝑣𝑖𝑗𝑡 are independent. 
  
The same repeated measure model is used for the excess zero probability: 

 logit�𝛿𝑖𝑗𝑡� = 𝑏𝑗 + 𝑓𝑖(𝑡) + 𝑤𝑖𝑗𝑡 (14) 

Again the time effect 𝑓𝑖(𝑡) is a polynomial in time up to order 2 and the vector 𝒘𝑖𝑗 follows a 
multivariate normal distribution. It is assumed that 𝑏𝑗 and 𝑤𝑖𝑗𝑡 are independent, and also 
independent of 𝑎𝑗 and 𝑣𝑖𝑗𝑡.  
Examples of the second order polynomial on the original count and excess zero probability 
scale for positive and negative values of the tolerance are given in Figure 6-1. Note that the 𝛽 
parameters which describe the time effect must be specified for each variety in the 
experiment. For the reference varieties each 𝛽 parameter is drawn from a normal distribution 
with specified mean and variance. Also note that it is not possible to have a linear effect in 
time for one variety and a quadratic time effect for another variety. 
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Figure 6-1:  Examples of second order polynomials on the original count scale (a) and (b), and on 
the original excess probability scale (c) and (d). The parameters used are  
for (a) and (c): 𝜷𝒐𝒑𝒕=5, 𝜷𝒎𝒂𝒙=log(10), and 𝜷𝒕𝒐𝒍=1, 2, 4, 8;  
for (b) and (d): 𝜷𝒐𝒑𝒕=5, 𝜷𝒎𝒂𝒙=log(0.2), and 𝜷𝒕𝒐𝒍=-1, -2, -3, -4.  
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7 Simulation model for multiple trials 
A single simulated dataset can also consists of multiple trials which can be used to study the 
design and analysis of multiple field trials across environments. Two variants of multiple 
trials are implemented: one in which there is no further structure across trials and one in 
which trials follow a Site x Year structure. In the latter case it is assumed that the same 
number of experiments are conducted (one in each year) at a limited number of sites. This can 
be set in the Trial groupbox. Note that when Multiple Trials is selected, the number of trials, 
rather than the number of sites and years, must be specified.

 

When Multiple Trials is selected, there is one extra level of variation. In addition to random 
block effects, there might be random trial effects such that trials will vary in their level of 
response without affecting differences between varieties. Also when Site x Year Trials is 
selected there might be random Site and random Year effects as well as a random Site.Year 
interaction effect. These random effects are then added to the other effects on the transformed 
(log or logit) scale. The variances of these additional random effects can be specified in the 
Variance parameters groupbox: 

 

or 

 
 
In addition to additive multiple trial effects on the transformed scale, variety effects might be 
different from trial to trial, from site by site or from year 
to year. This might be termed genotype by environment 
interaction. This is implemented by additional random 
effects which operate on the variety effects. When 
simulating Multiple Trials for instance, in each separate 
trial the variety effect is drawn from a normal distribution 
with some mean and variance. So with the values given on 
the right, the GMO effects across trials have a mean of 2 
and a variance of 0.5 and similarly 
for the comparator effect. For the 
reference varieties there are two 
stages of simulation. In the first stage 
a reference mean, say M,  for the trial 
is drawn from a normal distribution 
with mean 1 and variance 0.3. In the 
second stage the effects of the 
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reference varieties in that specific trial are simulated from a normal distribution with mean M 
and variance 0.5. Similarly for Site x Year Trials three variance components can be 
distinguished for every variety effect as depicted on the right. The examples given here relate 
to a single measurement experiment without excess zeroes in which only the mean of the 
variety effect must be specified. In case of repeated measurements with say a quadratic time 
effect, all the time effect 𝛽 parameters have their associated variance components and many 
parameters need to be specified. Moreover the same statistical model can be specified for the 
excess zero probability. So for a Site x Year Trial with some reference varieties and repeated 
counts with a quadratic time effect along with excess zeroes with a quadratic time effect the 
following values must be specified. 
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8 Examples of a simple simulation 
The simulation tool was used to perform two preliminary simulation studies to assess 
properties of statistical difference and equivalence testing in simple experiments. To this end 
single trials with single measurements were simulated without excess zeroes. A completely 
randomized experiment was employed and in addition to the GMO and its comparator one 
additional variety was included. This setup, without any random effects, only requires 
specification of three variety means on the log scale and specification of the count 
distribution. Since the power of a difference test or the properties of an equivalence test 
depends heavily on the level of replication, different levels of replication were included. 

8.1 Power of difference test for the negative binomial distribution 
In the first simulation study the power of a likelihood ratio test for the difference between the 
GMO and the comparator was studied. Data were simulated according to the negative 
binomial distribution without excess zeroes. The mean of the comparator and the additional 
variety were assumed to be equal to say 𝜇. Denote the mean of the GMO with 𝜆 and the 
number of replications with N. Data were simulated for all 864 combinations of the following 
values: 

• 𝜇 1,  2,  5,  10,  20,  40 
• 𝜆 = 𝛿𝜇 with 𝛿 = 1,  1.2,  1.4,  1.6,  1.8 , 2.0 
• 𝑁 4,  6,  8,  10,  15,  20,  30,  40 
• 𝜔 0.25,  0.5,  1 

For each combination 1000 datasets were simulated. The negative binomial distribution was 
fitted to each dataset, first under the restriction that the mean of the GMO equals the mean of 
the comparator and secondly without this restriction. A likelihood ratio test statistic is then 
given by twice the difference between the log-likelihoods of the two models. The large 
sample distribution of this test statistic is 𝜒12 and this distribution was used to calculate 
P values. The (simulated) power of the difference test is then given by the fraction of the 1000 
datasets for which the null hypothesis of no difference is rejected. A significance level of 
𝛼 = 0.05 was used. The simulated negative binomial data were also analysed with the over-
dispersed Poisson and with the lognormal distribution. For the over-dispersed Poisson 
distribution the quasi likelihood approach was used to fit the model and the likelihood ratio 
test was replaced by a scaled deviance test whenever the residual deviance of the full model 
(with separate parameters for the three varieties) was larger than one. An analysis employing 
the lognormal distribution simply involves taking the logarithm of the data and then analysing 
according to the normal distribution. Whenever a dataset has a zero observation, 0.5 was 
added to all observations before taking logs. The resulting power curves for the negative 
binomial model, the Poisson model and the lognormal model are given in Appendix 1 to 
Appendix 3. Appendix 4 contains a direct comparison between the power for the different 
models for N=10 and N=40. As expected the power is larger when there is less over-
dispersion (smaller values of 𝜔) and when the mean of the distribution is large. The number 
of replications required to detect a quotient 𝛿 = 2 between the mean of the GMO and the 
comparator with probability 0.80 using a two-sided test at 𝛼 = 0.05 is given in Table 8-1 for 
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the various values of 𝜇 and 𝜔. These values are interpolated from the values of N which are 
used in the simulation. 

Table 8-1:  Number of replications needed to obtain a significant result with probability 80% 
using a two-sided test at 𝜶 = 𝟎.𝟎𝟓 when the quotient of the mean of the GMO and 
the comparator equals 𝜹 = 𝟐 for data which have a negative binomial distribution 
with mean 𝝁 for the comparator and dispersion parameter 𝝎. The number of 
replications is given for the negative binomial, over-dispersed Poisson and 
lognormal model. 

NegBinomial 𝜇 = 1 𝜇 = 2 𝜇 = 5 𝜇 = 10 𝜇 = 20 𝜇 = 40 
𝜔 = 0.25 29 21 13 10 9 9 
𝜔 = 0.50 > 40 27 21 19 17 16 
𝜔 = 1.00 > 40 > 40 37 35 33 32 
overPoisson 𝜇 = 1 𝜇 = 2 𝜇 = 5 𝜇 = 10 𝜇 = 20 𝜇 = 40 
𝜔 = 0.25 32 22 13 10 10 9 
𝜔 = 0.50 > 40 27 21 18 16 16 
𝜔 = 1.00 > 40 39 32 32 28 27 
logNormal 𝜇 = 1 𝜇 = 2 𝜇 = 5 𝜇 = 10 𝜇 = 20 𝜇 = 40 
𝜔 = 0.25 36 26 17 13 12 11 
𝜔 = 0.50 > 40 37 30 27 24 23 
𝜔 = 1.00 > 40 > 40 > 40 > 40 > 40 > 40 

 
Surprisingly, an analysis under the wrong over-dispersed Poisson model requires slightly less 
replication for 𝜔 = 1 as compared to an analysis with the correct negative binomial 
distribution.  

8.2 Properties of equivalence test for the Poisson distribution 
In the second simulation study the properties of the TOST approach to equivalence testing 
was assessed for count data which were simulated according to the Poisson distribution. The 
TOST, or two one-sided tests, approach uses a two-sided confidence interval for the 
difference between the GMO and the comparator (Schuirmann, 1987). When the confidence 
interval completely lies in the interval determined by fixed lower and upper equivalence 
limits, then the null hypothesis of non-equivalence is be rejected in favour of equivalence. 
The same simulation setting as in section 8.1 was used, however since the Poisson distribution 
was used to simulate data there is no over-dispersion. Hypothetical equivalence limits of ½ 
and 2 were used to perform equivalence testing. A 95% likelihood ratio confidence interval 
for the ratio of the GMO mean and the comparator mean was calculated for each simulated 
dataset. The number of times this interval lies within the equivalence interval (½, 2) can then 
be counted. As an example the confidence interval for 40 simulated datasets is given in Figure 
8-1 with 𝜇 = 5 for both the GMO and the comparator, and for various values of the number 
of replications N. In this case the GMO and comparator have equal means and are thus 
theoretically equivalent. However for small numbers of replications the confidence intervals 
frequently crosses the equivalence limits implying that the null hypothesis of non-equivalence 
is not always rejected. 
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Figure 8-1: 95% likelihood ratio confidence intervals for the ratio of the mean of the GMO and 

the mean of the comparator when the underlying mean of both is 𝝁 = 𝟓, and various 
number of replication N. The red lines denote the artificial equivalence limits set at 
factor 2 Limits of Concern. 

 
 
Appendix 5 displays the power of the likelihood ratio difference tests as a function of the 
number of replication while Appendix 6 gives the probability to reject the null hypothesis of 
non-equivalence.  
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Appendix 1: Power of a difference test for the negative binomial distribution when the 
simulated data are analysed with the negative binomial distribution for replication 
levels N=4, 6, 8, 10, 15, 20, 30, 40 (bottom to top curves). 
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Appendix 2: Power of a difference test for the negative binomial distribution when the 
simulated data are analysed with the Poisson distribution for replication levels 
N=4, 6, 8, 10, 15, 20, 30, 40 (bottom to top curves). 
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Appendix 3: Power of a difference test for the negative binomial distribution when the 
simulated data are analysed with the LogNormal distribution for replication levels 
N=4, 6, 8, 10, 15, 20, 30, 40 (bottom to top curves). 
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Appendix 4: Power of a difference test for the negative binomial distribution when the 
simulated data are analysed with the Negative Binomial (black), Poisson (red) or 
LogNormal (green) distribution for replication levels N=10 (bottom curves) and 
40 (top curves). 
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Appendix 5: Power of a difference test for the Poisson distribution when the simulated data are 
also analysed with the Poisson distribution for means 𝝁 for the comparator and 
means 𝜹𝝁 for the GMO for replication levels N=4, 6, 8, 10, 15, 20, 30, 40. 
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Appendix 6: Probability of rejecting the null hypothesis of non-equivalence with respect to a 
factor 2 Limit of Concern for the Poisson distribution when the simulated data are 
also analysed with the Poisson distribution for means 𝝁 for the comparator and 
means 𝜹𝝁 for the GMO for replication levels N=4, 6, 8, 10, 15, 20, 30, 40. 

 

 


