AMIGA WP10 Deliverable no10.2 due month 14

Project Number 289706

COLLABORATIVE PROJECT

Assessing and Monitoring the Impacts of Genetically modified plants on Agro-ecosystems

D10.2 Economic model capable of estimating revenue implications of adopting transgenic crops in the EU.

Start date of the project: 01/12/2011 Duration: 48 months Organisation name of lead contractor for this deliverable: University of Reading Revision: 1.1 Authors: Ian McFarlane, Julian Park, Graziano Ceddia

Project f	Project funded by the European Commission within the Seventh Framework Programme (2007-2013)					
	Dissemination Level					
PU	Public	x				
PP	Restricted to other programme participants (including the Commission Services)					
RE	Restricted to a group specified by the consortium (including the Commission Services)					
CO	Confidential, only for members of the consortium (including the Commission Services)					

Table of Contents

1.	Background and Objectives	
2.	Model review	
3.	Outline of model principles and construction	6
3.	1 Model specification	6
4.	Model parameters	7
5.	Model assumptions	8
6.	Validation and sensitivity analysis	9
6.	1 Input data sets	9
6.	2 Sample outcomes	12
7.	Discussion and conclusions	14
8.	References	
Т	ables	17
	Table 1 – Economic parameters	17
	Table 2 – Technical data	
	Table 3 – Management data	19
App	endix A	20
	A1 Single cultivation – example of conventional vs IR, HT and HTIR maize	20
	A2 Five years continuous cultivation – conventional vs IR maize	21
	A3 Five year crop rotation – wheat-sugarbeet-wheat-legume-wheat	23
App	endix B – Coding of assumptions in VBA	

1. Background and Objectives

This deliverable relates to the construction of an economic model capable of estimating the revenue implications of adopting (and not adopting) a variety of transgenic crops within the EU. It has been constructed to align with the five EU regions that are the focus of the AMIGA project. As noted in the DOW the work to date on this deliverable has focussed on the construction of a working model. The full use and outputs from the model will be derived during the period of the project as more data becomes available, the final output being in the form of a Journal paper (as outlined in deliverable 10.7.)

The objectives of this paper are:

- To provide a brief review of available models
- To outline the overall principles adopted in the model construction process
- To describe the model parameters
- To communicate the assumptions made in construction
- To provide evidence of model calibration and validation
- To demonstrate initial use with preliminary scenarios.

2. Model review

Many previous studies have been published concerning the economic impact of transgenic crops and these were reviewed as part of deliverable 10.1. A few of these economic studies have been based on the formal representation of economic models. We note here some of the examples of relevant previous studies.

Broader policy models

Some of these models are broader based policy models, for example Anderson and Cavendish (2001) developed a dynamic simulation framework for exploring policy options, to assess the role of technical developments in relation to environment protection policy, permitting the introduction of time lags, and effects of changing preferences. Similarly, Munro (2003) estimated coefficients in expressions for consumer demand to arrive at conditions for competitive equilibrium, which required solving second-order equations for optimal pricing over two time periods. Some conclusions were reached regarding regulations that pertain to development and deployment of new transgenic varieties. Household surveys have also provided data for a different approach; for instance, Vitale et al (2007) and Vitale et al (2010) used survey data to estimate coefficients in sets of difference equations, and thus quantify the economic viability of Bt cotton for small-scale farmers in Mali and Burkina Faso, both under severe pest pressure.

In the context of developing countries, Raney (2006) reviewed factors that influence the level and distribution of the economic value created by transgenic crops using *ex-post* studies of herbicide-tolerant (HT) and insect-resistant (IR) maize grown in Argentina and South Africa.

In the research project "Sustainable Introduction of GMOs into European Agriculture" (SIGMEA) funded by the Sixth Framework Programme of the EC, Gómez-Barbero and Rodríguez-Cerezo (2006) estimated the global economic welfare generated by adoption of four dominant transgenic crops:

- Herbicide Tolerant soybean
- Insect-Resistant cotton

- Insect-Resistant maize
- Herbicide Tolerant rapeseed/canola.

It was concluded that [at that time] on-farm benefits were derived from reducing production costs. For some crops there were also yield increases (particularly in the case of Bt cotton). Adoption of HT soybean in the US had no significant effect on on-farm income, but resulted in crop management simplification, increased free time, and larger off-farm incomes for adopting farmers resulting in net benefits for adopters. The net economic benefits for farmers were variable in regional terms: the crops were designed to solve pest and weed problems which vary greatly in their geographical distribution. Small farmers had shown no difficulty in adopting the technology and adoption rates were not related to farm size. Moreover, detailed analyses (for example of Bt cotton in China) showed that increases in gross margin were comparatively larger for smaller and lower income farmers than for larger and higher income farmers. Of the four crops:

- adoption of HT soybean had resulted in displacement of several herbicides by a single less toxic product
- Bt cotton adoption had resulted in a significant decrease in the use of insecticides
- Bt maize adoption had induced only a little decrease in insecticide
- HT canola was grown exclusively in Canada and the USA; net aggregate benefit for farmers in the year 2000 was estimated to be about €12 per hectare.

More specific crop based models

Bachinger and Zander (2007) described a rule-based model in which a set of annual crop production activities was assembled from crop-specific field operations using a relational database, allowing for all possible 3 to 8 year crop rotation sequences within the constraints of organic farming, to optimise weed and site-specific N management. Gross margins were calculated from estimated yields, including the effects of crop subsidies. A feature of the model was sensitivity to soil quality as well as to preceding crop effects. The tool was able to generate and select agronomically sustainable crop rotations specific to the conditions of organic farming.

In relation to Bt varieties and pesticide-based control strategies of cotton–bollworm, Pemsl et al (2008) developed a bio-economic model which included the simulation of plant growth and of the dynamics of pest populations and of natural enemies. The model was used to explain the observed decision-making behaviour of farmers in northern China, who had opted for the cheaper and lower quality Bt seeds, and continued to spray insecticides against the cotton–bollworm. Model results showed the importance of the interaction between ecosystem disruption and pest control strategies. Indiscriminate insecticide use had a stronger side effect on beneficial insects than adoption of Bt cotton.

Spatial effects of the introduction of transgenic crops were modelled by Munro (2008), who noted that co-existence with conventional crops is associated with strong regulation on planting patterns. In a review of economic impacts of transgenic herbicide-resistant crops, Gianessi (2008) included reductions in herbicide expenses, increases in seed costs, increased yield and changes in the relative profitability of crops that has resulted in changes in choice of crops to be planted, and in addition, non-pecuniary benefits accrued as a result of the simplicity of weed management in the glyphosate-resistant crop systems.

Cui et al (2009) used the term 'system dynamics' for simulation technology based on feedback control theory, and applied the method to investigate yield, resource utilisation and soil fertility and thus

estimate economic outcomes, all with reference to paddy field crop rotations. They reported simulation of a 'three-level orthogonal experiment', validated in tests in the Chengdu plain region of China in 1998. They noted from their work that the development of three crops per year in paddy fields may improve long-term sustainability of paddy field ecosystems.

In trying to estimate the impacts of future events, Johnson et al (2008) constructed a quantitative model of the US wheat sector to analyse the potential economic impact of commercializing HT wheat. The model included two classes of wheat, including both biotech and non-biotech varieties. They used an assumed elasticity of substitution and an overall elasticity of wheat demand, with demand apportioned to market shares.

European context

Anderson (2010) reported results of a GTAP-based spreadsheet simulation of adoption of a range of GM crops that might have occurred had the EU moratorium not been in place, concluding that gains to developing countries from GM crops will be only slightly lower if EU policy continues to restrict imports. More recently, using a simple partial budgeting approach, Park et al (2011) estimated the revenue foregone by denying EU farmers the opportunity of cultivating these crops to be in the range €443 to €929M per year, based on performance achieved with these crops in other parts of the world.

An alternative way to model farm-level crop rotation was described by Schonhart et al (2011), who first reviewed diverse frameworks for modelling land use. They noted that economic representations are increasingly 'bottom up' to account for environmental and production costs as well as crop sequence management, commenting that land use modelling at regional level is 'coarse at best'. They give details, including coding, of a linear programming model written in the GAMS software package, which permits aggregation from farm to region, and from single to multiple years. The model was validated using seven years of data from 579 arable farms in Austria, and sensitivity analysis on model parameters was performed with random (Monte Carlo) variations.

Bohanec et al (2008) reported on use of a qualitative multi-attribute using a system known as DEXi, described as the largest and most integrative model developed within the ECOGEN (EC Framework 5, Scatasta et al, 2006) and SIGMEA projects. The system integrated findings of different specific disciplines, such as agronomy, biology, ecology and economics, and provided a general overview of cropping systems defined by four groups of features: (1) crop sub-type, (2) regional and farm-level context, (3) crop protection and crop management strategies, and (4) expected characteristics of the harvest. The model was considered useful for what-if analysis of realistic cropping systems.

A number of broader crop-based models have been funded by the EU. The System for Environmental and Agricultural Modelling; Linking European Science and Society (SEAMLESS, van Ittersum M. et al, 2008) modelling framework was investigated in some detail to establish whether it could form the basis for this modelling exercise. The software infrastructure of the project was anticipated to provide an open source means to facilitate linkage and integration of models and other knowledge sources from different domains and programmed in different environments and languages. After reviews of papers emanating from this project (Alkan Olsson J., et al, 2009; Ewert F., et al, 2009; Therond O., et al, 2009; Donatelli M., et al, 2010) and discussions with the overall project co-ordinator the WP10 team decided that the economic components of SEAMLESS would require a complete reconfiguration to meet the objects of the AMIGA project. On the basis of the above review and more in depth consideration of existing modelling frameworks it was concluded that the best approach to achieve the objectives of work package 10 was to construct a new model, drawing on elements of previous work where possible. The

basis of the "Model of Economic consequences of Transgenic crops in the EU" (METE) is described in the following sections.

3. Outline of model principles and construction

Given the fact that economic performance of any crop is affected by soil condition following harvest of the preceding crop and by treatments applied during crop development, we evaluated alternative software platforms that accommodate dynamic multivariable modelling combined with ease of performing sensitivity analysis on model predictions. Given also the need for the model to accommodate in due course input from experiments undertaken by partners in the AMIGA consortium, modelling software is required that not only allows dynamic model behaviour but will also readily accommodate the incorporation of those inputs. We have some previous experience of dynamic simulation modelling with STELLA (www.iseesystems.com/softwares/Education/StellaSoftware.aspx) and with Berkeley MADONNA (www.berkeleymadonna.com) which have similar features that facilitate development in a highly structured framework. The General Algebraic Modelling System (GAMS), used for example by Schonhart et al (2011) to model crop rotation, also offers all the features that may be needed; it is fully portable between PC operating systems and is freely available.

However, initial investigations of the above suggested that the type of versatility required within the METE model meant that a direct programming approach was probably the best approach to meet the functionality required with the model. Unlike STELLA and MADONNA, MS Visual Basic (VB) enables easily the use of stochastic perturbation of variables, which we deemed to be of particular use in the METE model where accurate estimates of some of the parameters will be difficult to obtain. VB is also seamlessly compatible with MS Excel and MS Word which is very useful in terms of inputing variables and deriving results. On that basis the METE model was constructed in VB, which has very flexible user interface options. The WP10 team have previous experience of using VB for the construction of a model to demonstrate economic outcomes of proposed methods for dealing with wildlife transmission in strategies to limit farm losses from bovine TB (see Wilkinson et al, 2009), thus had confidence in potentially functionality allowed via the use of VB.

3.1 Model specification

Time period. Crop rotations typically extend over two to five years; the model accommodates scenarios of crop sequences adopted over a five year period. This enables the effects of crop and crop management choices on subsequent crops to be modelled. It is also possible to model a single growth year.

Time step. As the model is an economic model as opposed to a model of crop development, we consider that one month time steps are sufficient to model the management decisions that may be made during a crop cycle.

Area to be modelled. Coexistence costs are partly set by the need to provide separation from conventional crops on adjacent land, and so the cost will vary with the area occupied by a transgenic crop. The model allows for simulations with a range of field sizes. For instance the model allows the user to specify average field sizes between 4 and 80 ha.

Five regions. The AMIGA proposal FP7-KBBE-2011-5-CP-CSA specifies that assessment is to be based on five biogeographic regions: 'Participants to the AMIGA project will constitute 5 regional groups: Atlantic (Ireland, UK, Denmark, Netherlands), Boreal (Finland, Sweden), Continental (Austria, Germany, Slovakia), Mediterranean (France, Italy, Spain), and Balkans (Bulgaria, Romania). The [first four] areas were selected similarly to [those] indicated in the Natura 2000 approach (Boreal, Atlantic, Continental, Mediterranean). In addition we indicated a fifth area (Balkans), which includes two countries that according to Natura 2000 belong to four different zones.'

Choice of sets of crops. The model allows the selection of conventional crops and crop sequences which are common in a given biogeographic region. Where available the GM alternative can be selected.

Physical and economic parameters. A table of typical yield per hectare of the selected crops, together with seed costs and ex-farm value per tonne at harvest was compiled using published data. Further costs taken into account are the costs of tillage, pesticides and herbicides, together with, for some regions and crops, the cost of irrigation.

Model outcomes. The model computes the predicted variations in yield of each crop in a five year sequence of monocropping or crop rotation. Many possible crop sequences can be assessed for an arable farm of a specific size in any one of the five regions of the EU identified in the AMIGA project.

Calculations. Simulation proceeds in up to 60 monthly steps, with crop potential yield re-estimated each month that the crop is in the soil, in response to simulated levels of pressure associated with pests, weeds and drought. The simulated pest and drought pressures each have a stochastic component. Potential yield variation in response to the various pressures is calculated using coefficients obtained from published data.

Management strategies. The user interface allows for the opportunity to compare the consequences of management decisions regarding extent of tillage and applications of pesticide and herbicide, and use of irrigation where relevant.

User interface. The calculations are performed in MS Visual Basic for Applications (VBA), each sequence being initiated from a VBA User Form (Figure 1) that allows choice of EU region, farm size and initial pressure in three categories (pest, weed and drought), and choice of crops in the rotation from drop-down lists of available crop options.

Results. Economic outcomes are presented primarily as gross margin for each crop in the rotation, together with the sum of the margins for each of the crops in the 5 year sequence. The outcomes are tabulated in MS Excel worksheets, and the user can inspect these before deciding whether, via the User Form, to discard them or transfer the worksheets for saving in a separate newly-created MS Excel workbook. Combined outputs can be quickly graphed to so that multiple outputs can be displayed.

4. Model parameters

The 24 crop options from which rotations can be compiled are listed in each of Tables 1, 2 and 3, where the agronomic variables associated with each crop (obtained from published data) are listed.

Table 1 contains:

- growing period (in months) required for each crop
- potential yield per hectare
- seed cost per hectare
- crop value at harvest, per tonne
- cost of minimum and full tillage
- cost per application of pesticide and herbicide
- cost per hectare of irrigation (where used)

Table 2 contains:

- rate of impairment of yield due to pests
- rate of impairment due to weeds
- vulnerability to drought

Table 3 contains:

- normal extent of tillage
- typical number of pesticide applications
- typical number of herbicide applications
- irrigation policy.

Comparison can readily be made between crop scenarios, and the model has three modes of operation:

- to assess the performance of a single crop over one growing cycle
- to assess the performance of the same crop over five consecutive cycles (for instance continuous maize growing, either conventional or transgenic)
- to assess the combined performance of a set of crops in rotation over five growing cycles (for instance up to 5 different crops, one or more of which may be a GM variety).

In every case, crops are subject to varying levels of pest, weed and drought pressure. There is an option to simulate the performance of the crop including the absence of any of these pressures, which enables a direct prediction to be made of the economic impact of a specified level of each type of pressure.

5. Model assumptions

[Coding of the assumptions is given in Appendix B].

Yield of each crop in a sequence is initially assumed to be as in published data for that crop for typical farms in that region.

The potential yield is recalculated for each month that the crop is in the soil as an empirical function of:

- typical growth pattern for that crop
- pest pressure, taking account of past management policy and prior conditions
- weed pressure, taking account of tillage and weed management policy, and prior conditions
- Water use management, taking account of simulated drought pressure
- GMO traits.

The rate at which potential yield is reduced under pest pressure is calculated using a coefficient for each crop, using published data if available, or by inference from observed effect on other crops if necessary. Pests, where present, exert stochastically variable and gradually increasing pressure unless managed via pesticide application. In each month in which simulated pest pressure reaches a specified level, broad spectrum pesticide is applied if that is the management policy selected. If the crop is changed as in a normal rotation, pest pressure is reduced with change of host crop. If the crop is IR, it is assumed that the pest population is reduced. This lessens the extent to which pest pressure impairs potential yield of the crop. The reduction in pest population also results in reduced pest pressure for a subsequent crop.

The rate at which potential yield is reduced under weed pressure is calculated using a coefficient for each crop, using published data if available, or by inference from observed effect on other crops if necessary. Weeds, once established, exert progressively increasing pressure unless managed. In each month in which simulated weed pressure reaches a specified level, broad spectrum herbicide is applied if that is the management policy selected. If the crop is HT, it is assumed that glyphosate or similar herbicide is applied while the crop is in the ground, and that weed pressure and therefore the impact of weeds on potential yield is reduced. This alleviation of weed pressure is assumed to reduce weed pressure for a subsequent crop.

The effect of drought pressure is calculated using a coefficient for each crop, using published data if available, or by inference from observed effect on other crops. Legume crops are assumed to have a beneficial effect on the performance of the subsequent crop in relation to residual fertility. This benefit has been estimated from the literature.

Impairment of potential yield due to multiple simultaneous pressures is assumed to be somewhat less than would have been imposed by the sum of those pressures acting separately (i.e. a crop already affected by a strong pressure is only partially further impaired by other unrelated pressures).

6. Validation and sensitivity analysis

Initial testing and commissioning of the model has been performed, in three stages:

- Simulation of one growing cycle of maize, recording the progress each month under progressively severe pest pressure, comparing Bt maize with conventional maize
- Extending the simulation to five cycles of continuous cultivation of either Bt or conventional maize
- Simulation of a five year rotation of crops under progressively severe weed pressure, comparing results from replacing one cycle of conventional sugarbeet with HT sugarbeet.

Model parameters have been adjusted to ensure that model outcomes are consistent with *ex-post* published data of reports of the performance of IR and HT crops, particularly reports of the Bt maize grown in Spain.

The outcomes for the model runs for Bt maize, both as a single crop and as a continuous crop, are consistent with the findings of Gómez-Barbero, Berbel and Rodriguez-Cerezo (2008), who used data from an *ad hoc* survey of maize farmers in Spain to assess the factors that might have affected Spanish farmers' decisions whether or not to adopt Bt maize technology, and to calculate the differences in agronomic and economic performance between adopters and non-adopters.

HT sugarbeet is a crop likely to be of great interest to European farmers; Dillen et al (2013) published data on the performance of HT sugarbeet following widespread adoption in USA and Canada. Our third set of tests used the scenario wherein one cycle of sugarbeet is included in a five year crop rotation in AMIGA Region 4 (Denmark, Netherlands, Ireland, Belgium, Luxembourg, Portugal, UK), with results consistent with the data of Dillen et al for similar cultivation in North America.

6.1 Input data sets

Data for parameters associated with a set of crops (initially 16 conventional and 7 GMO crops, with a further 'fallow' option), are tabulated in a set of spreadsheets addressable in the model coding Tables 1, 2 and 3. Results of simulations are assembled in further data sheets, which are then copied as required to

new Excel Workbooks created within the program, and named accordingly. Selections of significant results are presented in graphical format during subsequent reporting.

Access to the model is via a single UserForm (Figure 1), on which there are tabs to select one of three versions of simulation:

- A single cultivation with options as depicted (Figure 1a)
- Cultivation of one crop for 5 consecutive years (Figure 1b)
- Cultivation of crops in a 5 year crop rotation (Figure 1c).

In each version, the crop or crops can be selected from a menu populated with the same set of crops, the region can be selected from the five EU regions as defined for the AMIGA project, and plot size can be between 4 and 80 ha. Initial levels of pressure from pests, weeds and drought can be specified, and these then vary during the steps of the simulation as determined by the simulated environment and in accordance with preset management scenarios.

Figure 1 – The User Form

1a – Single vear

1a – Single year		1b – Five year monocrop
AMIGA tab options	×	AMIGA tab options
oneyear 5 year rotation 5 year monocrop RunID(xx-ddmmyy): Region (1-5) 3 • 01-120313 Plot Size (4-80ha) 10 • Save RunID Pest pressure (0-100%) 20 • Run Weed pressure (0-100%) 15 • Save and reset Drought level (0-100%) 0 • Exit Exit 0 •	crop: feedmaize	oneyear 5 year rotation Sear monocrop RunID(xx-ddmmyy): Region (1-5) 3 + crop: 03-120313 Plot Size (4-80ha) 10 + feedmaize • Save RunID Pest pressure (0-100%) 25 + • • Run Weed pressure (0-100%) 10 + • • Save and reset Drought level (0-100%) 0 + •

1c – Five year rotation

AMIGA tab options		×
oneyear 5 year rotation 5 year r	monocrop	
RunID(xx-ddmmyy):	Region (1-5) 4	Year 1 crop:
		winterwheat 💌
02-120313	Plot Size (4-80ha)	Year 2 crop:
Save RunID		sugarbeet 🔻
Run	Pest pressure (0-100%) 25	Year 3 crop:
	Weed pressure	springwheat 💌
Save and reset	(0-100%) 10	Year 4 crop:
	Drought level 0	legume 🔻
Reset without saving		potato sugarbeet rice winterbarley springbarley
		sunflower
		durumwheat
		rye

Pressures are combined using an empirical relation, and the potential yield of each crop is recalculated at each monthly step until the month of harvest. At that point, the predicted value of the crop is calculated on the basis of a preset price per ton for that crop, and the farmer's gross margin found by subtracting the cost of seed, control measures and (if the crop is GMO) the costs of coexistence.

6.2 Sample outcomes

Typical outcomes from each version of the model are illustrated graphically in Figures 2-4.

Figure 2 shows the effect of increase in pest pressure (horizontal axis) on yield (left vertical axis) and gross margin (right vertical axis) per hectare for conventional maize (Figure 2a) and insect-resistant Bt maize (Figure 2b). With conventional feedmaize, the farmer is assumed to make one application of pesticide when pests appear, and a second application when pressure exceeds 50%. The gross margin for Bt maize in the absence of pests is less than the gross margin for conventional maize, but the margin for Bt maize is maintained at all pressures when pests are present in the locality.

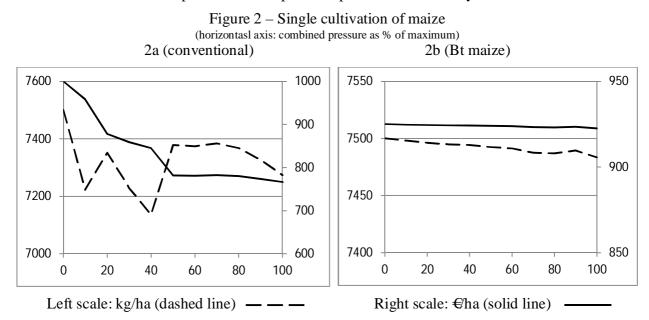
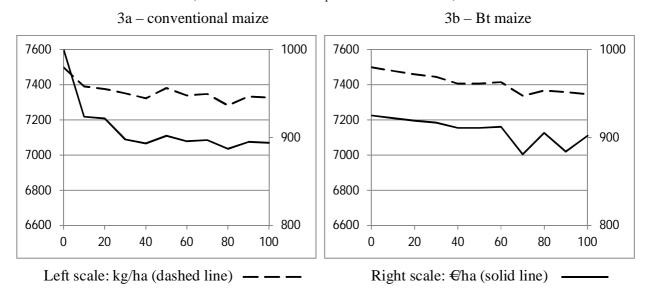



Figure 3 shows the average yield and average gross margin for five years of continuous cultivation of either conventional maize (Figure 3a) or Bt maize (Figure 3b), with average pest pressure on the horizontal axis. With five years of continuous maize, the yield of Bt maize is maintained, and the average gross margin preserved, up to the severity of pest pressure at about 70%. At this point the prolonged severe pest pressure requires intervention in the form of additional conventional persticide applications.

Figure 3 – Five years of continuous maize (horizontasl axis: combined pressure as % of maximum)

Figure 4 shows part of the outcome of a five-year crop rotation, with either conventional or herbicide tolerant sugarbeet grown in the second year, a legume grown in fourth year, and wheat grown in the first, third and fifth years. The horizontal axis represents weed pressure at commencement of the rotation, and on the vertical axis is shown:

- Beet yield per hectare (left scale)
- Average gross margin per hectare for all five years (right scale)

The outcome suggests that adopting HT sugarbeet for one year is beneficial to the overall outcome in all scenarios except that of complete absence of weeds.

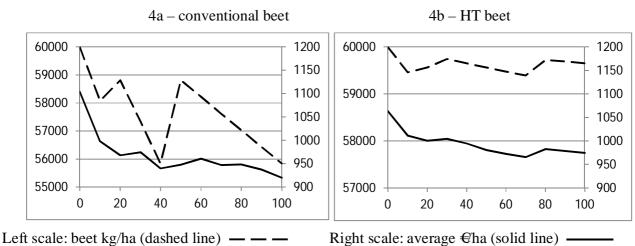


Figure 4 – Five years, sugarbeet in year 2 of a 5 year rotation (horizontasl axis: combined pressure as % of maximum)

7. Discussion and conclusions

As outlined above, the main focus of D10.2 has been the construction of a working model. This will be used and adapted throughout the duration of the AMIGA project as new scenarios for use become apparent and as new data becomes available. The main outputs from model use will form the basis for an academic paper or papers as per Deliverable 10.7. Here we have highlighted three potential future scenarios and the resultant model outputs.

In this report we have reviewed above a number of previous methods for modelling the agronomic and economic performance of transgenic crops, particularly those equivalent to conventional varieties grown extensively in countries in the EU. We have assessed the requirements for the modelling work specified within AMIGA WP10, and from the resources available we made the decision to construct a dynamic model in the MS Visual Basic for Applications (VBA) environment, which would allow us to integrate data as it becomes available throughout the project.

There is some suggestion that the on-going regulations which means that EU farmers either have no access or very limited access to GM varieties has deterred the major seed suppliers from developing GM alternatives to common arable crops agronomic issues in the EU (Moschini, 2008, Williams 2010, Laursen 2012). It is thus doubly difficult to model *ex-ante* the agronomic and economic performance of GM crops that might be cultivated here: to the difficulty of extrapolation from data on performance of GM crops elsewhere in the world must be added the uncertainty as to how well GM crops not yet adapted for European farming might perform.

This report outlines the design and testing of a model "Model of Economic consequences of Transgenic crops in the EU" (METE) that simulates in one month steps the effect on potential yield and gross margin of crops grown in a single cycle, continuously over several crop cycles, and as part of a crop rotation over five years, subject in each case to varying levels of pest, weed and drought pressures, with associated applications of pesticide, herbicide and irrigation.

The METE model takes account of costs of compliance with regulations concerning coexistence of transgenic and conventional crops: unlike elsewhere in the world, coexistence costs in Europe fall entirely on the transgenic crop grower.

Initial model validation runs suggest that the METE model is capable of simulating different crops and rotations across the EU. Validation runs suggest, not surprisingly, that any advantage of IR and HT crops is likely to be related to the pest and weed pressure in a given area. However, much more detailed model runs will be undertaken to investigate a range of potential scenarios, the outputs of which will be reported in academic papers (as per D10.7). Our conclusion is that the METE model provides a flexible framework to investigate a range of GM crop scenarios between now and the end of the project. The framework is such that it will allow the investigation of a range of scenarios across the five Amiga regions and can be updated as new data becomes available.

8. References

Alkan Olsson J., et al (2009) Methodology to translate policy assessment problems into scenarios: the example of the SEAMLESS integrated framework. Environ Sci & Policy 12, 562-572

Anderson D., Cavendish W. (2001) Dynamic simulation and environmental policy analysis. Oxford Econ Papers 53, 721-746

Anderson K. (2010) Economic Impacts of Policies Affecting Crop Biotechnology and Trade. New Biotech 27(5), 558-564

Bachinger J., Zander P. (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. European J Agronomy 26(2), 130-143

Bohanec M., et al (2008) A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops. Ecological Modelling 215, 247-261

Cui J., Huang G., Tang Y. (2009) System dynamic simulation of three crops per year in paddy field. World J Modelling and Simulation 5(2), 144-150

Dillen K., et al (2013) Bred for Europe but grown in America: the case of GM sugar beet. New Biotech 30(2)

Donatelli M., et al (2010) A Component-Based Framework for Simulating Agricultural Production and Externalities. pp 63-108 in 'Environmental and Agricultural Modelling: Integrated Approaches for Policy Impact Assessment', eds Brouwer F.M. and van Ittersum M., Springer

Ewert F., et al (2009) A methodology for enhanced flexibility of integrated assessment in agriculture. Environ Sci and Policy 12, 5 4 6 - 5 6 1

Gianessi L.P. (2008) Economic impacts of glyphosate-resistant crops. Pest Manag Sci 64(4), 346–352

Gómez-Barbero M., Rodríguez-Cerezo E. (2006) Economic Impact of Dominant GM Crops Worldwide:a Review. EUR 22547 EN, Catalogue number: LF-NA-22547-EN-C, ISBN: 92-79-03879-6 Office for Official Publications, EC, Luxembourg

Gómez-Barbero M., Berbel J., Rodriguez-Cerezo E.(2008) Bt corn in Spain - the performance of the EU's first GM crop. Nature Biotechnology, 26, 384-386.

Johnson S., Strom S., Grillo K. (2008) Quantification of the Impacts on US Agriculture of Biotechnology-Derived Crops Planted in 2006. National Center for Food and Agricultural Policy, Washington, DC

Laursen L. (2012) BASF moves GM crop research to US. Nature Biotech 30, 204. doi:10.1038/nbt0312-204b

Moschini G. (2008) Biotechnology and the development of food markets: retrospect and prospects. European Rev Agri Econ 35(3), 331–355

Munro A. (2003) Monopolisation and the regulation of genetically modified crops: an economic model. Environment and Development Economics 8, 167–186

Munro A. (2008) The spatial impact of genetically modified crops. Ecological Economics 67(4), 658-666

Park J., McFarlane I., Phipps R., Ceddia G. (2011) The impact of the EU regulatory constraint of transgenic crops on farm income. New Biotech 28(4), 296-306

Pemsl D., Gutierrez A., Waibel H. (2008) The economics of biotechnology under ecosystem disruption. Ecological Economics 66(1), 177-183

Raney T. (2006) Economic impact of transgenic crops in developing countries. Current Opinion in biotechnology 17(2), 174-178

Scatasta S., et al (2006) Multi-Attribute Modelling of Economic and Ecological Impacts of Agricultural Innovations on Cropping System. J. System Cybernet. Informat. 4, 52–59

Schonhart M., et al (2011). CropRota – A crop rotation model to support integrated land use. European Journal of Agronomy 34(4), 263-277

Therond O., et al (2009) Methodology to translate policy assessment problems into scenarios: the example of the SEAMLESS integrated framework. Environ Sci & Policy 12, 619-630

van Ittersum M., et al (2008) Integrated assessment of agricultural systems – A component-based framework for the European Union (SEAMLESS). Agricultural Systems 96 (2008) 150–165

Vitale J., et al (2007) Economic Impacts of Introducing Bt Technology in Smallholder Cotton Production Systems of West Africa: A Case Study from Mali. AgBioForum, 10(2): 71-84.

Vitale J., et al (2010) Second-Generation Bt Cotton Field Trials in Burkina Faso: Analyzing the Potential Benefi ts to West African Farmers. Crop Sci 48(5), 1958-1966

Wilkinson, D., et al. (2009) Cost-benefit analysis model of badger (Meles meles) culling to reduce cattle herd tuberculosis breakdowns in Britain, with particular reference to badger perturbation. Journal of Wildlife Diseases, 45 (4). 1062-1088

Williams N. (2010) One new potato. Current Biology 20(7), R301

Tables

Table 1 – Economic parameters

Crops		drill-mth	end-mth	yield-kg/ha	seed-€/ha	harvest-€/t	min till-€/ha	tillage-€/ha	pesticide-€/ha	herbicide-€/ha	irrigation-€/ha
1	winterwheat	1	6	8000	60	150	50	120	100	100	200
2	springwheat	2	8	6000	60	150	50	120	100	100	200
3	feedmaize	2	8	7500	125	150	50	120	100	100	200
4	soya	3	9	3000	100	400	50	120	100	100	200
5	rape	3	9	3000	50	350	50	120	100	100	200
6	cotton	3	9	1500	200	2500	50	120	100	100	200
7	potato	2	7	40000	800	150	50	120	100	100	200
8	sugarbeet	2	7	60000	200	40	50	120	100	100	200
9	rice	2	8	8000	120	250	50	120	100	100	200
10	winterbarley	v 1	6	6300	78	164	50	120	100	100	200
11	springbarley	2	8	4950	80	196	50	120	100	100	200
12	sunflower	3	9	2160	108	390	50	120	100	100	200
13	legume	2	8	1400	109	220	50	120	100	100	200
14	durumwheat	2	8	5450	138	232	50	120	100	100	200
15	rye	2	8	4600	100	155	50	120	100	100	200
16	triticale	2	8	5440	70	138	50	120	100	100	200
17	fallow	1	12	0	0	0	0	0	0	0	0
18	HTmaize	2	8	7500	150	150	50	120	100	80	200
19	IR maize	2	8	7500	150	150	50	120	100	100	200
20	HTIR maize	2	8	7500	180	150	50	120	100	80	200
21	HTsoya	3	9	3000	125	400	50	120	100	80	200
22	HTrape	3	9	3000	75	350	50	120	100	80	200
23	IR cotton	2	9	1500	250	2500	50	120	100	100	200
24	GMsugarbee	3	10	60000	250	40	50	120	100	100	200

Table 2 – Technical data

Crops		pest damage rate	weed damage rate	vul to drought
1	winterwheat	0.98	1	1
2	springwheat	1	1	1
3	feedmaize	1.2	1	1
4	soya	1	1	1
5	rape	1	1.05	1
6	cotton	1	1	1
7	potato	1	1	1
8	sugarbeet	1	1	1
9	rice	1	1	1
10	winterbarley	0.98	1	1
11	springbarley	1	1	1
12	sunflower	1	1	1
13	legume	1	1	1
14	durumwheat	1	1	1
15	rye	1	1	1
16	triticale	1	1	1
17	fallow	0	0	0
18	HT maize	1	1	1
19	IR maize	1	1	1
20	HTIR maize	1	1	1
21	HT soya	1	1	1
22	HTrape	1	1	1
23	IR cotton	1	1	1
24	GMsugarbeet	1	1.2	1

Table 3 – Management data

Crops		tillage	pesticide	herbicide	irrigate
1	winterwheat	1	1	1	0
2	springwheat	1	1	1	0
3	feedmaize	0	1	1	1
4	soya	0	0	0	0
5	rape	0	1	1	0
6	cotton	0	0	0	0
7	potato	0	0	0	0
8	sugarbeet	0	0	1	0
ç	rice	0	0	0	0
10	winterbarley	0	1	1	0
11	springbarley	0	0	0	0
12	sunflower	0	0	0	0
13	legume	1	0	0	0
14	durumwheat	0	0	0	0
15	rye	0	0	0	0
16	triticale	0	0	0	0
17	fallow	0	0	0	0
18	HTmaize	0	1	1	1
19	IR maize	0	1	1	1
20	HTIR maize	0	1	1	1
21	HTsoya	0	0	0	0
22	HTrape	0	1	1	1
23	IR cotton	0	0	0	0
24	GM sugarbeet	0	0	1	0

Appendix A

A1 Single cultivation – example of conventional vs IR, HT and HTIR maize

AI SIN	gie cultiva		ample of co	onventior	iai vs ir, i	H I and H			
		Costs and ret						es (0-100%	
crop:	yield-kg/ha	seed	control	sales	margin	time	pest	weed	drought
feedmaize	7500	125	0	1125	1000	16:37:06	0.0	0.0	0.0
feedmaize	7375	125	0	1106	981	16:37:09	10.0	0.0	0.0
feedmaize	7425	125	100	1114	889	16:37:12	20.0	0.0	0.0
feedmaize	7390	125	100	1108	883	16:37:14	30.0	0.0	0.0
feedmaize	7353	125	100	1103	878	16:37:17	40.0	0.0	0.0
feedmaize	7263	125	100	1089	864	16:37:19	50.0	0.0	0.0
feedmaize	7170	125	100	1076	851	16:37:22	60.0	0.0	0.0
feedmaize	7423	125	200	1113	788	16:37:24	70.0	0.0	0.0
feedmaize	7410	125	200	1112	787	16:37:26	80.0	0.0	0.0
feedmaize feedmaize	7399 7389	125 125	200 200	1110 1108	785 783	16:37:29 16:37:32	90.0 100.0	0.0 0.0	0.0 0.0
feedmaize feedmaize	7500 7345	125 125	0 0	1125 1102	1000 977	16:37:41 16:37:44	0.0 0.0	0.0 10.0	0.0 0.0
feedmaize	7379	125	100	1107	882	16:37:47	0.0	20.0	0.0
feedmaize	7270	125	100	1090	865	16:37:49	0.0	30.0	0.0
feedmaize	7118	125	100	1068	843	16:37:52	0.0	40.0	0.0
feedmaize	7379	125	200	1107	782	16:37:54	0.0	50.0	0.0
feedmaize	7354	125	200	1103	778	16:37:57	0.0	60.0	0.0
feedmaize	7300 7239	125 125	200 200	1095 1086	770 761	16:38:00 16:38:02	0.0 0.0	70.0 80.0	0.0 0.0
feedmaize feedmaize	7239	125	200	1086	761	16:38:02	0.0	80.0 90.0	0.0
feedmaize	7178	125	200	1077	732	16:38:05	0.0	90.0 100.0	0.0
IR maize	7500	125	200 50	1125	925	16:38:24	0.0	0.0	0.0
IR maize	7499	150	50	1125	925	16:38:28	10.0	0.0	0.0
IR maize	7497	150	50	1125	925	16:38:32	20.0	0.0	0.0
IR maize	7496	150	50	1123	924	16:38:35	30.0	0.0	0.0
IR maize	7495	150	50	1124	924	16:38:38	40.0	0.0	0.0
IR maize	7493	150	50	1124	924	16:38:41	50.0	0.0	0.0
IR maize	7492	150	50	1124	924	16:38:43	60.0	0.0	0.0
IR maize	7490	150	50	1124	924	16:38:46	70.0	0.0	0.0
IR maize	7489	150	50	1123	923	16:38:49	80.0	0.0	0.0
IR maize	7489 7488	150	50 50	1123	923 923	16:38:49	80.0 90.0	0.0	0.0
IR maize	7486	150	50	1123	923	16:38:52	90.0 100.0	0.0	0.0
HT maize	7480	150	130	1125	923 845	16:39:14	0.0	0.0	0.0
HT maize	7300	150	130	1125	845	16:39:14	0.0	10.0	0.0
HT maize	7470	150	130	1120	836	16:39:20	0.0	20.0	0.0
HT maize	7409	150	130	1110	831	16:39:23	0.0	30.0	0.0
HT maize	7379	150	130	1107	827	16:39:26	0.0	40.0	0.0
HT maize	7345	150	130	1102	822	16:39:28	0.0	50.0	0.0
HT maize	7270	150	130	1090	811	16:39:31	0.0	60.0	0.0
HT maize	7194	150	130	1079	799	16:39:34	0.0	70.0	0.0
HT maize	7118	150	130	1068	788	16:39:37	0.0	80.0	0.0
HT maize	7042	150	130	1056	776	16:39:39	0.0	90.0	0.0
HT maize	7379	150	210	1107	747	16:39:42	0.0	100.0	0.0
feedmaize	7500	125	0	1125	1000	16:40:00	0.0	0.0	0.0
feedmaize	7037	125	0	1056	931	16:40:04	10.0	10.0	0.0
feedmaize	7235	125	200	1085	760	16:40:10	20.0	20.0	0.0
feedmaize	6987	125	200	1048	723	16:40:15	30.0	30.0	0.0
feedmaize	6519	125	200	978	653	16:40:18	40.0	40.0	0.0
feedmaize	6953	125	300	1043	618	16:40:23	50.0	50.0	0.0
HTIR maize	7500	180	130	1125	815	16:40:36	0.0	0.0	0.0
HTIR maize	7468	180	130	1120	810	16:40:40	10.0	10.0	0.0
HTIR maize	7437	180	130	1115	806	16:40:46	20.0	20.0	0.0
HTIR maize	7405	180	130	1111	801	16:40:50	30.0	30.0	0.0
HTIR maize	7373	180	130	1106	796	16:40:55	40.0	40.0	0.0
HTIR maize	7328	180	130	1099	789	16:41:01	50.0	50.0	0.0

		Costs and ret	urns, €/ha:			Pressures (0- 100%):
crop:	yield-kg/ha	seed	control	sales	margin	pest
feedmaize	7500	125	0	1125	1000	0
	7500	125	0	1125	1000	
	7500	125	0	1125	1000	
	7500	125	0	1125	1000	
	7500	125	0	1125	1000	
feedmaize	7419	125	100	1113	888	10
	7335	125	0	1100	975	
	7423	125	100	1113	888	
	7349	125	0	1102	977	
	7423	125	100	1113	888	
feedmaize	7344	125	100	1102	877	20
	7411	125	100	1112	887	
	7347	125	0	1102	977	
	7415	125	100	1112	887	
	7360	125	0	1104	979	
feedmaize	7411	125	200	1112	787	30
	7198	125	0	1080	955	
	7389	125	100	1108	883	
	7346	125	0	1102	977	
	7413	125	100	1112	887	
feedmaize	7389	125	200	1108	783	40
	7162	125	0	1074	949	
	7393	125	100	1109	884	
	7263	125	0	1089	964	
	7404	125	100	1111	886	
feedmaize	7360	125	200	1104	779	50
	7414	125	100	1112	887	
	7329	125	0	1099	974	
	7420	125	100	1113	888	
	7380	125	0	1107	982	
feedmaize	7211	125	200	1082	757	60
	7391	125	100	1109	884	
	7313	125	0	1097	972	
	7420	125	100	1113	888	
	7358	125	0	1104	979	
feedmaize	7266	125	200	1090	765	70
	7411	125	100	1112	887	
	7276	125	0	1091	966	
	7417	125	100	1113	888	
	7371	125	0	1106	981	
feedmaize	7403	125	300	1110	685	80
	7340	125	0	1101	976	
	7144	125	0	1072	947	
	7388	125	100	1108	883	
	7133	125	0	1070	945	
feedmaize	7420	125	300	1113	688	90
	7348	125	0	1102	977	
	7417	125	100	1113	888	
	7353	125		1103	978	

A2 Five years continuous cultivation – conventional vs IR maize

feedmake 7402 7367 125 125 300 100 1110 105 1005 485 986 986 100 R make 7500 150 50 1125 925 0 R make 7500 150 50 1125 925 0 R make 7404 150 50 1125 925 0 R make 7444 150 50 1122 922 10 R make 7443 150 50 1122 922 10 R make 7443 150 50 1122 922 10 R make 7443 150 50 1117 917 30 R make 7444 150 50 1117 917 30 R make 7444 150 50 1117 917 30 R make 7444 150 50 1117 917 30 R make 7423 150 50 1111 914 40<		7127	125	0	1069	944	
Image 7367 7379 125 125 100 0 1003 106 980 986 IR make 7500 7500 150 150 50 1125 1225 925 0 IR make 7404 7407 150 150 50 1125 1125 925 925 925 IR make 7484 7479 150 50 50 1122 922 922 10 IR make 7484 7477 150 50 50 1122 922 922 10 IR make 7463 7467 150 50 50 1122 922 922 20 IR make 7463 150 50 50 1112 920 920 20 IR make 7463 150 50 50 1117 917 917 30 IR make 7444 150 50 50 1116 916 30 IR make 7423 150 50 50 1116 916 30 IR make 7423 150 50 50 1111 911 914 40 IR make 7423 150 50 50 1110 911 911 910 IR make 7423 150 5	feedmaize	7402	125	300	1110	685	100
125 0 1083 958 IR maize 7500 150 50 1125 925 0 IR maize 7500 150 50 1125 925 0 IR maize 7500 150 50 1125 925 0 IR maize 7484 150 50 1122 922 10 T477 150 50 1122 922 10 111 910 10 112 922 10 R maize 7463 150 50 1122 922 10	loodinaizo						100
IR maize 7264 7264 125 125 100 0 1107 1090 882 965 IR maize 7500 7500 150 50 50 50 1125 750 925 7500 0 IR maize 7444 7477 150 50 50 50 1123 722 923 720 10 IR maize 7463 7467 150 50 50 112 923 720 10 IR maize 7463 7467 150 50 50 112 920 720 20 IR maize 7464 7467 150 50 50 1119 919 720 20 IR maize 7464 7461 150 50 50 1119 910 710 30 IR maize 7444 740 150 50 50 1111 911 910 40 IR maize 7429 7403 150 50 50 1110 910 50 IR maize 7429 7425 150 50 50 1110 911 914 909 50 IR maize 7429 7425 150 50 50 1109 909 70 70 IR maize 7407 7415 150 50 50 1100 906 7365 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
IR make 7264 125 0 1090 965 IR make 7500 150 50 1125 925 0 IR make 7444 150 50 1125 925 0 IR make 7444 150 50 1125 925 0 IR make 7444 150 50 1122 922 10 IR make 7463 150 50 1122 922 10 IR make 7463 150 50 1121 920 20 IR make 7463 150 50 1110 920 20 IR make 7463 150 50 1118 918 30 IR make 7446 150 50 1117 917 30 IR make 7449 150 50 1111 914 40 7440 150 50 1111 914 40 7443 150							
R maize 7500 7500 7500 150 150 150 50 50 1125 125 925 925 0 R maize 7444 7477 150 50 50 50 1125 925 925 10 R maize 7464 7467 150 50 50 50 1122 922 923 925 10 R maize 7463 7467 150 50 50 50 1121 921 920 920 20 R maize 7463 7467 150 50 50 1117 917 919 30 R maize 7464 7467 150 50 50 1116 916 916 30 R maize 7444 7444 150 50 50 1116 916 916 30 R maize 7423 7403 150 50 50 1109 909 30 R maize 7423 7403 150 50 50 1109 909 30 R maize 7423 7403 150 50 50 1109 909 30 R maize 7423 7403 150 50 50 1108 908 30 R maize 7407 7412 150 50 50 1109 909 3							
Image: Problem in the second		7264	125	U	1090	905	
7500 150 50 1125 925 IR maize 7484 150 50 1123 923 10 7479 150 50 1122 922 10 7479 150 50 1121 922 10 7476 150 50 1121 922 10 R maize 7463 150 50 1121 920 20 R maize 7463 150 50 1112 920 20 R maize 7446 150 50 1112 920 20 R maize 7446 150 50 1117 917 30 IR maize 7429 150 50 1116 916 110 910 111 IR maize 7429 150 50 1110 911 40 150 50 1110 911 150 50 1110 911 50 1110 911 150	IR maize						0
R maize 7500 150 50 1125 925 IR maize 7484 150 50 1122 922 10 7477 150 50 1122 922 12 IR maize 7463 150 50 1121 920 20 IR maize 7463 150 50 1120 920 20 IR maize 7463 150 50 1112 920 20 IR maize 7464 150 50 1118 918 20 IR maize 7446 150 50 1117 917 30 IR maize 7446 150 50 1116 916 IR maize 7429 150 50 1116 916 IR maize 7423 150 50 1114 914 40 7403 150 50 1113 914 50 IR maize 7423 150 50				50			
IR maize 7500 150 50 1125 925 IR maize 7484 150 50 1123 923 10 7479 150 50 1122 922 922 7474 7476 150 50 1121 921 921 IR maize 7463 150 50 1112 920 20 7461 150 50 1112 920 20 7461 7451 150 50 1112 917 30 7484 150 50 1117 917 30 7484 150 50 1116 916 7444 7403 150 50 1117 917 30 R maize 7429 150 50 1114 914 40 7403 150 50 1113 914 50 IR maize 7423 150 50 1113 914 50					1125		
IR maize 7449 7479 150 150 50 50 1123 122 923 922 10 IR maize 7463 7467 150 50 1121 920 20 IR maize 7463 150 50 1121 921 20 IR maize 7467 150 50 1119 919 20 IR maize 7464 150 50 1118 918 20 IR maize 7446 150 50 1117 917 30 IR maize 7446 150 50 1116 916 IR maize 7446 150 50 1117 917 30 IR maize 7429 150 50 1116 916 40 IR maize 7429 150 50 1110 911 40 IR maize 7423 150 50 1113 914 50 IR maize 7407 150 50 1111 911 912 </td <td></td> <td></td> <td></td> <td>50</td> <td></td> <td></td> <td></td>				50			
Image 7479 7477 150 150 150 50 50 1122 122 922 922 922 IR maize 7463 7467 150 150 50 1119 921 920 920 20 IR maize 7463 7467 150 150 50 1119 919 920 920 20 IR maize 7463 7467 150 150 50 1118 918 918 IR maize 7446 7448 150 50 50 1117 917 917 916 30 IR maize 7446 7448 150 50 50 1117 911 911 910 40 IR maize 7429 7425 150 50 50 1114 914 40 IR maize 7423 150 150 1110 910 909 909 909 IR maize 7423 150 150 1111 911 911 910 50 IR maize 7423 150 150 1112 912 912 912 60 IR maize 7431 150 150 50 1111 911 911 911 60 IR maize 7381 7358 150 50 1107		7500	150	50	1125	925	
Image 7479 7477 150 150 150 50 50 1122 122 922 922 922 IR maize 7463 7467 150 150 50 1121 921 20 IR maize 7463 7467 150 150 50 1119 919 20 20 IR maize 7463 7467 150 150 50 1119 919 20 20 IR maize 7446 150 150 50 1117 917 917 30 IR maize 7448 150 50 50 1117 917 916 30 IR maize 7429 7429 150 50 50 1110 916 40 IR maize 7423 7425 150 50 50 1110 911 40 IR maize 7423 7425 150 50 50 1110 911 911 IR maize 7423 7425 150 50 50 1110 911 911 IR maize 7423 7425 150 50 50 1112 912 60 IR maize 7431 150 50 50 1112 912 60 IR maize	IR maize	7484	150	50	1123	923	10
Image 7477 7476 150 150 50 50 1122 121 922 922 JR maize 7463 7467 150 150 50 50 1119 919 920 920 920 20 JR maize 7463 7461 150 50 50 1118 918 918 20 JR maize 7446 7445 150 50 50 1117 917 917 30 JR maize 7446 7445 150 50 50 1117 917 917 30 JR maize 7429 7403 150 50 50 1110 911 40 JR maize 7429 7403 150 50 50 1110 911 40 JR maize 7423 7403 150 50 50 1110 911 40 JR maize 7423 7403 150 50 50 1110 911 40 JR maize 7423 7415 150 50 50 1112 912 60 JR maize 7407 7415 150 50 50 1112 912 60 JR maize 7407 150 50 50 1112 912 60 JR maize 7381 73		7479		50	1122	922	
Image 7476 7471 150 150 50 50 1121 121 922 921 IR maize 7463 7467 150 50 50 1120 920 919 20 7467 IR maize 74461 7451 150 50 50 1118 918 918 IR maize 7446 7442 150 50 50 1117 917 917 30 742 IR maize 7449 7447 150 50 50 1116 916 916 IR maize 7429 7403 150 50 50 1110 911 40 IR maize 7423 7403 150 50 50 1110 911 40 IR maize 7423 7403 150 50 50 1110 911 50 IR maize 7423 7403 150 50 50 1109 909 909 IR maize 7423 7403 150 50 50 1108 908 60 IR maize 7407 7412 150 50 50 1112 912 912 60 IR maize 7381 7415 150 50 50 1107 907 706 70 70 7358 7350 150 50							
IR maize 7471 150 50 1121 921 IR maize 7463 150 50 1119 920 20 7461 150 50 1120 920 920 7461 7461 150 50 1118 918 7451 7451 7461 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 7467 747 750 71118 918 747 777 777 777 7744 7150 50 7117 917 740 7447 750 50 71114 914 40 7403 750 50 71110 911 40 7403 150 50 71110 911 741 740 7403 150 50 71110 911 741 741 741 741 741 741 741 741 741 750							
Image: Problem in the second							
Image: Problem in the second	IR maize	7463	150	50	1110	920	20
IR maize 7461 7451 150 150 50 50 1119 1118 919 918 IR maize 7446 7442 150 50 50 1117 917 917 30 917 IR maize 7446 7442 150 50 50 1116 916 916 917 IR maize 7429 7440 150 50 50 1116 914 916 40 IR maize 7429 7403 150 50 50 1110 911 911 40 IR maize 7423 7403 150 50 50 1110 914 909 50 IR maize 7423 7403 150 50 50 1110 914 909 50 IR maize 7427 7403 150 50 50 1110 911 909 50 IR maize 7407 7412 150 50 50 1112 912 912 60 IR maize 7431 7415 150 50 50 1112 912 912 60 IR maize 7381 7358 150 50 50 1112 912 912 70 IR maize 7381 7358 150 50 50 1105 906 885 80 IR maize	int findizo						20
IR maize 7451 7451 150 150 50 50 1118 118 918 918 IR maize 7446 7448 150 50 50 50 1117 917 917 917 30 917 IR maize 7429 7447 150 50 50 50 1114 916 916 IR maize 7429 7403 150 50 50 50 1114 911 914 909 40 IR maize 7423 7403 150 50 50 50 1113 914 914 50 50 IR maize 7423 7425 150 50 50 1109 909 909 909 909 IR maize 7427 150 50 50 1110 911 911 50 IR maize 7407 7415 150 50 50 1112 912 912 60 IR maize 7381 735 150 50 50 1112 912 912 70 IR maize 7357 7358 150 50 50 1107 907 705 70 IR maize 7351 7351 150 50 50 1105 906 885 80 IR maize 7357 7365 150 50 50 1105 905 7365							
R maize 7451 150 50 1118 918 IR maize 7446 150 50 1117 917 30 7448 150 50 1117 917 30 7442 150 50 1116 916 7440 150 50 1114 914 40 IR maize 7429 150 50 1111 911 40 IR maize 7423 150 50 1111 911 40 IR maize 7423 150 50 1110 911 50 IR maize 7423 150 50 1113 914 50 IR maize 7403 150 50 1110 911 50 IR maize 7423 150 50 1111 914 50 IR maize 7407 150 50 1112 912 913 IR maize 7381 150 50							
IR maize 7446 7448 7442 7447 150 150 150 50 50 1117 117 917 917 30 IR maize 7429 7440 150 150 50 1116 916 916 IR maize 7429 7403 150 150 50 1114 914 916 40 IR maize 7429 7403 150 150 50 1111 911 910 40 IR maize 7423 7403 150 150 50 1113 914 50 IR maize 7425 7425 150 50 50 1113 914 50 IR maize 7425 7425 150 50 50 1111 911 911 IR maize 7407 7412 150 50 50 1111 912 912 IR maize 7407 7415 150 50 50 1111 913 913 60 IR maize 7331 7303 150 50 50 1107 907 70 70 IR maize 7335 7315 150 50 1107 905 906 80 IR maize 7375 7365 150 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
R maize 7448 7442 150 150 50 50 1117 116 917 916 IR maize 7429 7440 150 150 50 50 1114 911 914 910 40 IR maize 7429 7403 150 150 50 50 1114 911 914 909 40 IR maize 7423 7403 150 150 50 50 1110 910 910 IR maize 7423 7425 150 50 50 1110 914 909 50 IR maize 7423 7425 150 50 50 1109 909 909 909 IR maize 7407 7415 150 50 50 1112 912 912 60 IR maize 7407 7416 150 50 50 1112 912 912 60 IR maize 7381 7415 150 50 50 1112 912 912 70 IR maize 7381 7315 150 50 50 1107 907 70 70 IR maize 7375 7358 150 50 50 1106 906 885 80 IR maize 7375 7365 150 50 50 1105 905 7352 150 50						710	
R maize 7442 7447 150 150 50 50 1116 117 916 916 IR maize 7429 7403 150 150 50 1114 911 914 909 40 IR maize 7423 7403 150 150 50 1111 911 911 40 IR maize 7423 7403 150 150 50 1113 914 914 50 50 IR maize 7423 7403 150 50 50 1113 914 914 50 50 IR maize 7423 7405 150 50 50 1110 909 909 IR maize 7407 7412 150 50 50 1111 912 912 IR maize 7381 7415 150 50 50 1112 912 912 IR maize 7381 7303 150 50 50 1107 907 907 70 IR maize 7375 7303 150 50 50 1107 905 996 7231 903 80 IR maize 7375 7345 150 50 50 1106 906 905 906 905 805 IR maize 7267 7320	IR maize		150			917	30
R maize 7447 7440 150 150 50 50 1117 1116 917 916 IR maize 7429 7403 150 50 50 50 1114 911 914 910 40 R maize 7429 7403 150 50 50 50 1110 910 909 909 909 IR maize 7423 7403 150 50 50 50 1113 914 914 50 50 IR maize 7423 7403 150 50 50 50 1110 911 910 909 909 IR maize 7407 7415 150 50 50 1108 908 60 IR maize 7407 7415 150 50 50 1112 912 912 60 IR maize 7381 7415 150 50 50 1104 904 904 70 IR maize 7381 7415 150 50 50 1104 906 885 80 IR maize 7375 7352 150 50 50 1106 905 7365 906 806 80 IR maize 7267 7365 150 50 50 1103 903 90 IR maize 7267 7365 150 50 50 1005		7448			1117		
IR maize 7440 150 50 1116 916 IR maize 7429 150 50 1114 914 40 7403 150 50 1111 911 900 909 7403 150 50 1110 910 909 909 7403 150 50 1113 914 50 50 IR maize 7423 150 50 1113 914 50 7403 150 50 1114 914 50 7425 150 50 1110 911 50 7403 150 50 1110 911 50 7407 150 50 1112 912 60 R maize 7407 150 50 1112 912 714 7415 150 50 1112 912 714 714 715 50 1112 912 71 7415					1116		
Image 7429 7403 7401 7401 7393 150 150 50 50 50 1111 911 909 909 909 909 909 909 909 9		7447	150	50	1117	917	
R maize 7403 7401 150 150 50 50 1111 109 109 909 909 7403 911 909 7403 IR maize 7423 7425 150 50 50 50 1113 914 909 7385 914 50 50 7425 IR maize 7423 7425 150 50 50 1109 911 909 50 IR maize 7407 7415 150 50 50 1109 911 909 50 IR maize 7407 7412 150 50 50 1112 912 912 60 IR maize 7407 7415 150 50 50 1112 912 912 70 IR maize 7381 7415 150 50 50 1107 907 70 70 IR maize 7381 7415 150 50 50 1107 907 905 70 IR maize 7375 7351 150 50 50 1105 906 885 80 IR maize 7375 7365 150 50 50 1105 906 905 80 IR maize 7267 7365 150 50 50 1105 906 905 90 90 IR maize 7267 7365 150 7365 50 1005 100 885 <td></td> <td>7440</td> <td>150</td> <td>50</td> <td>1116</td> <td>916</td> <td></td>		7440	150	50	1116	916	
R maize 7403 7401 150 150 50 50 1111 109 109 909 909 7403 911 909 7403 IR maize 7423 7425 150 50 50 50 1113 914 909 7385 914 50 50 7425 IR maize 7423 7425 150 50 50 1109 911 909 50 IR maize 7407 7415 150 50 50 1109 911 909 50 IR maize 7407 7412 150 50 50 1112 912 912 60 IR maize 7407 7415 150 50 50 1112 912 912 70 IR maize 7381 7415 150 50 50 1107 907 70 70 IR maize 7381 7415 150 50 50 1107 907 905 70 IR maize 7375 7351 150 50 50 1105 906 885 80 IR maize 7375 7365 150 50 50 1105 906 905 80 IR maize 7267 7365 150 50 50 1105 906 905 90 90 IR maize 7267 7365 150 7365 50 1005 100 885 <td>IR maize</td> <td>7429</td> <td>150</td> <td>50</td> <td>1114</td> <td>914</td> <td>40</td>	IR maize	7429	150	50	1114	914	40
R maize 7401 7393 7403 150 150 50 50 1110 109 50 910 909 909 911 IR maize 7423 7425 150 150 50 50 1113 914 914 50 50 1114 914 914 50 IR maize 7407 7412 150 50 50 1109 909 909 7385 150 50 1111 911 911 60 IR maize 7407 7412 150 50 50 1112 912 912 71 60 IR maize 7407 7419 150 50 50 1112 912 912 71 IR maize 7381 7415 150 50 50 1104 904 904 70 IR maize 7381 7415 150 50 50 1104 906 896 80 IR maize 7375 7351 150 50 50 1106 906 806 80 IR maize 7375 7352 150 50 50 1105 905 7365 905 7365 905 7365 906 7365 906 7365 905 7365 905 7365 906 7365 906 7365 906 7365 906 7365 906 7365 906 7365 906 7365 906 7				50		911	
R maize 7403 150 50 1109 909 IR maize 7423 150 50 1110 911 IR maize 7423 150 50 1113 914 50 7403 150 50 1114 914 50 7403 150 50 1110 911 7403 150 50 1110 911 7391 150 50 1109 909 7385 150 50 1111 911 60 R maize 7407 150 50 1112 912 7416 150 50 1112 912 712 7415 150 50 1107 907 70 7415 150 50 1104 904 733 IR maize 7358 150 50 1095 896 7231 150 50 1085 885 7335 1							
R maize 7403 150 50 1110 911 IR maize 7423 150 50 1113 914 50 7425 150 50 1114 914 50 7403 150 50 1110 911 7391 150 50 1109 909 7385 150 50 1111 911 60 IR maize 7407 150 50 1112 912 60 7412 150 50 1112 912 60 7417 150 50 1112 912 60 7415 150 50 1112 912 7416 150 50 1113 913 70 IR maize 7381 150 50 1104 904 73 70 70 70 70 70 70 71 885 7415 150 1005 896 7231 150 50 1005 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
7425 150 50 1114 914 7403 150 50 1110 911 7391 150 50 1109 909 7385 150 50 1108 908 IR maize 7407 150 50 1111 911 60 7416 150 50 1112 912 74 61 60 7415 150 50 1112 912 74 60 7415 150 50 1112 912 74 60 7415 150 50 1112 912 74							
7425 150 50 1114 914 7403 150 50 1110 911 7391 150 50 1109 909 7385 150 50 1108 908 IR maize 7407 150 50 1111 911 60 7416 150 50 1112 912 74 61 60 7415 150 50 1112 912 74 60 7415 150 50 1112 912 74 60 7415 150 50 1112 912 74	IR maize	7423	150	50	1113	914	50
7403 150 50 1110 911 7391 150 50 1109 909 7385 150 50 1108 908 IR maize 7407 150 50 1111 911 60 7412 150 50 1112 912 7416 60 7416 150 50 1112 912 7416 150 50 1112 912 7415 150 50 1112 912 7417 7417 917 70 7419 150 50 1107 907 70 7303 150 50 1104 904 7303 70 7303 150 50 1095 896 7231 150 150 1112 812 IR maize 7375 150 50 1106 906 80 7365 150 50 1105 905 7365 150 905 </td <td>in maize</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50</td>	in maize						50
R maize 7391 7385 150 150 50 50 1109 1108 909 909 908 IR maize 7407 7412 150 150 50 50 1111 912 912 912 60 7412 7416 150 50 50 1112 912 912 912 7415 917 IR maize 7381 7358 150 50 50 1107 907 907 70 IR maize 7381 7315 150 50 50 1095 996 896 7231 70 IR maize 7375 7358 150 50 50 1085 1095 885 885 7231 80 IR maize 7375 7365 150 50 50 1106 906 905 905 7365 80 IR maize 7267 7362 150 50 50 1005 905 905 90 IR maize 7267 7230 150 50 50 1009 890 90 90							
IR maize 7385 150 50 1108 908 IR maize 7407 150 50 1111 911 60 7412 150 50 1112 912 912 7416 150 50 1112 912 912 7416 150 50 1112 912 912 7416 150 50 1112 912 912 7417 150 50 1112 912 912 7417 913 716 50 1111 913 71 913 716 50 1113 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 71 913 913 71 913 71							
7412 150 50 1112 912 7416 150 50 1112 912 7416 150 50 1112 912 7415 150 50 1112 912 7419 150 50 1112 912 IR maize 7381 150 50 1107 907 70 7358 150 50 1095 896 72 71 150 50 1095 896 72 IR maize 7375 150 50 1085 885 80 7415 150 1106 906 80 IR maize 7375 150 50 1106 906 80 7369 150 50 1106 906 80 7352 150 50 1105 905 7365 150 50 1090 890 90 IR maize 7267 150 50 1090 890							
7412 150 50 1112 912 7416 150 50 1112 912 7416 150 50 1112 912 7415 150 50 1112 912 7419 150 50 1112 912 IR maize 7381 150 50 1107 907 70 7358 150 50 1095 896 72 71 150 50 1095 896 72 IR maize 7375 150 50 1085 885 80 7415 150 1106 906 80 IR maize 7375 150 50 1106 906 80 7369 150 50 1106 906 80 7352 150 50 1105 905 7365 150 50 1090 890 90 IR maize 7267 150 50 1090 890		7.407	150	50		011	10
7416 150 50 1112 912 7415 150 50 1112 912 7419 150 50 1112 912 IR maize 7381 150 50 1107 907 70 7358 150 50 1104 904 70 7303 150 50 1095 896 7231 150 50 1085 885 7415 150 50 1085 885 812 812 812 IR maize 7375 150 50 1106 906 80 7365 150 50 1106 906 80 7375 150 50 1105 905 7365 150 50 1095 890 90 IR maize 7267 150 50 1009 890 90 90 IR maize 7267 150 50 1085 885 90 <td>ik maize</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>60</td>	ik maize						60
7415 150 50 1112 912 IR maize 7381 150 50 1113 913 IR maize 7381 150 50 1107 907 70 7358 150 50 1104 904 7303 150 50 1095 896 7231 150 50 1095 896 7231 150 50 1085 885 7415 150 150 1102 812 812 812 IR maize 7375 150 50 1106 906 80 7369 150 50 1106 906 80 7369 150 50 1105 905 7365 150 50 1103 903 IR maize 7267 150 50 1090 890 90 90 IR maize 7267 150 50 1085 885 90							
IR maize 7381 7358 150 150 50 50 1113 913 IR maize 7381 7358 150 50 50 104 907 904 70 907 70 907 IR maize 7375 7415 150 150 50 1085 1104 906 906 885 IR maize 7375 7365 150 150 50 1105 1106 906 906 80 IR maize 7267 7365 150 150 50 1105 905 905 890 90 IR maize 7267 7230 150 150 50 1085 1090 885 890 90 90							
IR maize 7381 7358 150 150 50 50 1107 104 907 904 70 7303 150 50 1104 905 905 905 905 905 905 905 905 905 905 903 904 904 904 904 904 904 904 904 904 905 905 905 905 905 905 905 905 905 905 905 905 905<							
7358 150 50 1104 904 7303 150 50 1095 896 7231 150 50 1085 885 7415 150 150 1112 812 IR maize 7375 150 50 1106 906 80 7371 150 50 1106 906 80 7365 150 50 1105 905 7365 150 50 1105 905 7352 150 50 1103 903 903 90 IR maize 7267 150 50 1090 890 90 18 maize 7267 150 50 1085 885 90		7419	150	50	1113	913	
IR maize 7267 7231 7415 150 150 50 50 1085 1095 885 885 885 896 885 IR maize 7375 7365 150 150 50 1106 906 906 80 IR maize 7375 7365 150 150 50 1105 905 905 896 IR maize 7267 7230 150 150 50 1085 1090 885 890 90	IR maize						70
7231 150 50 1085 885 7415 150 150 1112 812 IR maize 7375 150 50 1106 906 80 7371 150 50 1106 906 80 7369 150 50 1105 905 7365 150 50 1105 905 7352 150 50 1103 903 IR maize 7267 150 50 1090 890 90 IR maize 7267 150 50 1085 885 90			150	50	1104	904	
IR maize 7415 150 150 1112 812 IR maize 7375 150 50 1106 906 80 7371 150 50 1106 906 80 7371 150 50 1106 906 80 7369 150 50 1105 905 7365 150 50 1103 903 IR maize 7267 150 50 1090 890 90 IR maize 7267 150 50 1085 885		7303	150	50	1095	896	
IR maize 7375 7371 150 150 50 50 1106 1106 906 906 80 7371 150 50 1106 906 80 7369 150 50 1105 905 905 7365 150 50 1105 905 905 7352 150 50 1103 903 903 IR maize 7267 150 50 1090 890 90 7230 150 50 1085 885 90		7231	150	50	1085	885	
7371 150 50 1106 906 7369 150 50 1105 905 7365 150 50 1105 905 7352 150 50 1103 903 IR maize 7267 150 50 1090 890 90 7230 150 50 1085 885 1085 1085 1085		7415	150	150	1112	812	
7371 150 50 1106 906 7369 150 50 1105 905 7365 150 50 1105 905 7352 150 50 1103 903 IR maize 7267 150 50 1090 890 90 7230 150 50 1085 885 1085 1085 1085	IR maize	7375	150	50	1106	906	80
7369 150 50 1105 905 7365 150 50 1105 905 7352 150 50 1103 903 IR maize 7267 150 50 1090 890 90 7230 150 50 1085 885 1085 1085 1085							50
7365 150 50 1105 905 7352 150 50 1103 903 IR maize 7267 150 50 1090 890 90 7230 150 50 1085 885 1085 1085 1085							
7352 150 50 1103 903 IR maize 7267 150 50 1090 890 90 7230 150 50 1085 885 1085 1085							
7230 150 50 1085 885							
7230 150 50 1085 885	ID maiza	7247	150	EO	1000	000	00
	in IIIdize						70
/420 150 150 1114 014							
	I	/420	150	150	1114	014	

	7433	150	50	1115	915	
	7433	150	50	1115	915	
IR maize	7327	150	50	1099	899	100
	7344	150	50	1102	902	
	7323	150	50	1098	899	
	7360	150	50	1104	904	
	7371	150	50	1106	906	

A3 Five year crop rotation – wheat-sugarbeet-wheat-legume-wheat (conventional vs herbicide-tolerant sugarbeet in year 2)

						Pressures (0-
		Costs and retu	urns, €/10 ha:			100%):
crop:	yield-kg/ha	seed	control	sales	margin	weed
winterwheat	8000	600	0	12000	11400	0
sugarbeet	60000	2000	0	24000	22000	
springwheat	6000	600	0	9000	8400	
legume	1400	1090	0	3080	1990	
winterwheat	8000	600	0	12000	11400	
winterwheat	7535	600	0	11303	10703	10
sugarbeet	58073	2000	1000	23229	20229	
springwheat	5882	600	1000	8823	7223	
legume	1306	1090	0	2874	1784	
winterwheat	7694	600	1000	11541	9941	
winterwheat	7676	600	1000	11514	9914	20
sugarbeet	58807	2000	1000	23523	20523	
springwheat	5591	600	0	8387	7787	
legume	979	1090	0	2153	1063	
winterwheat	7803	600	2000	11705	9105	
winterwheat	7865	600	2000	11797	9197	30
sugarbeet	57328	2000	0	22931	20931	
springwheat	5827	600	1000	8740	7140	
legume	1257	1090	0	2765	1675	
winterwheat	7585	600	1000	11377	9777	
winterwheat	7789	600	2000	11683	9083	40
sugarbeet	55837	2000	0	22335	20335	
springwheat	5709	600	1000	8564	6964	
legume	1141	1090	0	2511	1421	
winterwheat	7860	600	2000	11790	9190	
winterwheat	7676	600	2000	11514	8914	50
sugarbeet	58807	2000	1000	23523	20523	50
springwheat	5591	600	000	8387	20323	
legume	979	1090	0	2153	1063	
winterwheat	7803	600	2000	11705	9105	
winterwheat	7563	600	2000	11345	8745	60
sugarbeet	58222	2000	1000	23289	20289	
springwheat	5887	600	1000	8831	7231	
legume	1312	1090	0	2886	1796	
winterwheat	7716	600	1000	11574	9974	
winterwheat	7450	600	2000	11176	8576	70
sugarbeet	57626	2000	1000	23050	20050	
springwheat	5850	600	1000	8776	7176	

legume	1278	1090	0	2813	1723	
winterwheat	7629	600	1000	11443	9843	
winterwheat	7856	600	3000	11783	8183	80
sugarbeet	57029	2000	0	22812	20812	
springwheat	5803	600	1000	8705	7105	
legume	1235	1090	0	2717	1627	
winterwheat	7541	600	1000	11312	9712	
winterwheat	7834	600	3000	11751	8151	90
sugarbeet	56433	2000	0	22573	20573	70
springwheat	5756	600	1000	8634	7034	
legume	1192	1090	0	2622	1532	
winterwheat	7454	600	1000	11181	9581	
winterwheat	7789	600	3000	11683	8083	100
sugarbeet	55837	2000	0	22335	20335	
springwheat	5709	600	1000	8564	6964	
legume	1141	1090	0	2511	1421	
winterwheat	7860	600	2000	11790	9190	
		(10000	11/00	•
winterwheat GM	8000	600	0	12000	11400	0
sugarbeet	60000	2500	1499	24000	20001	
springwheat	6000	600	0	9000	8400	
legume	1400	1090	0	3080	1990	
winterwheat	8000	600	0	12000	11400	
Winterwheat	0000	000	Ū	12000	11400	
winterwheat	7535	600	0	11303	10703	10
GM						
sugarbeet	59458	2500	1499	23783	19784	
springwheat	5893	600	0	8840	8240	
legume	1319	1090	0	2902	1812	
winterwheat	7744	600	1000	11616	10016	
	7/7/	(00	1000	11514	0014	20
winterwheat GM	7676	600	1000	11514	9914	20
sugarbeet	59567	2500	1499	23827	19828	
springwheat	5914	600	0	8872	8272	
legume	1343	1090	0	2956	1866	
winterwheat	7841	600	1000	11762	10162	
winterwheat	7865	600	2000	11797	9197	30
GM						
sugarbeet	59740	2500	1499	23896	19897	
springwheat	5949	600	0	8923	8323	
legume	1376	1090	0	3028	1938	
winterwheat	7645	600	0	11467	10867	
winterwheat	7789	600	2000	11683	9083	40
GM	1107	000	2000	11005	7003	40
sugarbeet	59653	2500	1499	23861	19862	
springwheat	5932	600	0	8897	8297	
legume	1363	1090	0	2999	1909	
winterwheat	7446	600	0	11170	10570	
winterwheat	7676	600	2000	11514	8914	50
GM		05		00007	10	
sugarbeet	59567	2500	1499	23827	19828	
springwheat	5914	600	0	8872	8272	
legume	1343	1090	0	2956	1866	
winterwheat	7841	600	1000	11762	10162	
winterwheat	7563	600	2000	11345	8745	60
GM	59480	2500	1499	23792	19793	
	57.00					

sugarbeet						
springwheat	5897	600	0	8846	8246	
legume	1324	1090	0	2912	1822	
winterwheat	7764	600	1000	11646	10046	
winterwheat	7450	600	2000	11176	8576	70
GM						
sugarbeet	59393	2500	1499	23757	19758	
springwheat	5880	600	0	8820	8220	
legume	1304	1090	0	2869	1779	
winterwheat	7685	600	1000	11527	9927	
winterwheat	7856	600	3000	11783	8183	80
GM						
sugarbeet	59723	2500	1499	23889	19890	
springwheat	5945	600	0	8918	8318	
legume	1375	1090	0	3025	1935	
winterwheat	7605	600	0	11408	10808	
	7024	(00	2000	11751	0151	00
winterwheat GM	7834	600	3000	11751	8151	90
sugarbeet	59688	2500	1499	23875	19876	
springwheat	5938	600	0	8908	8308	
legume	1371	1090	0	3016	1926	
winterwheat	7526	600	0	11289	10689	
winterwheat	7520	000	0	11209	10009	
winterwheat	7789	600	3000	11683	8083	100
GM	1107	000	3000	11005	0003	100
sugarbeet	59653	2500	1499	23861	19862	
springwheat	5932	600	0	8897	8297	
legume	1363	1090	0	2999	1909	
winterwheat	7446	600	0	11170	10570	
						1

Appendix B – Coding of assumptions in VBA

B1 – if the crop is GMO, then a 'flat rate' coexistence cost is assumed, irrespective of farm size.

If ThisCropID > 17 Then CoexistenceCost = 499 Else CoexistenceCost = 0

- B2 if the crop is IR, the initial pest pressure is reduced by a fixed percentage.
 - If (ThisCropID = 19 Or ThisCropID = 20 Or ThisCropID = 23 Or ThisCropID = 24) _ Then CropIsIR = True
 - If CropIsIR Then Pressure(1) = 0.1 * Pressure(1)
- B3 if the crop has been changed, the initial pest pressure is reduced by a fixed percentage.

If CropID <> pCropID Then Pressure(1) = 0.8 * Pressure(1)

B4 – if the crop is HT, the initial weed pressure is reduced by a fixed percentage.

```
If (ThisCropID = 18 Or ThisCropID = 20 Or ThisCropID = 21 Or ThisCropID = 22 _
```

- Or ThisCropID = 24) Then CropIsHT = True
- If CropIsHT Then Pressure(2) = 0.2 * Pressure(2)
- and one-off cost/ha of glyphosate or equivalent application is charged.

```
DisAgg(calyr, 3) = DisAgg(calyr, 3) + (econData(ThisCropID, 9) * PlotSize)
```

- B5 potential yield (subject to modification by pressures) from known performance data.
- YieldThisCrop = econData(ThisCropID, 3)
- B6 if previous crop was legume, this enhances potential yield by fixed percentage.

If pCropID = 13 Then YieldThisCrop = 1.05 * YieldThisCrop

- B7 if previous year was fallow, initial weed pressure is increased by fixed percentage.
 - If pCropID = 17 Then Pressure(2) = 1.2 * Pressure(2)
- B8 if previous crop IR, then initial pest pressure reduced by fixed percentage.

```
If pCropIR Then Pressure(1) = 0.75 * Pressure(1)
```

B9 - if previous crop HT, then initial weed pressure reduced by fixed percentage.

If pCropHT Then Pressure(2) = 0.9 * Pressure(2)

B10 - one-off cost/ha is charged if Tillage or Min-Tillage selected.

If Tillage = 1 Then TillageCost = econData(ThisCropID, 6)

If Tillage = 2 Then TillageCost = econData(ThisCropID, 7)

B11 – if tillage is carried out, then weed pressure reduced to $\frac{1}{4}$ or $\frac{1}{3}$ of previous pressure.

Pressure(3) = (1 / (Tillage + 2)) * Pressure(3)

B12 – seed and tillage charged at specified rates.

```
DisAgg(calyr, 2) = DisAgg(calyr, 2) + (econData(ThisCropID, 4) * PlotSize)
DisAgg(calyr, 3) = DisAgg(calyr, 3) + (TillageCost * PlotSize)
```

In each month that crop is in ground, update pressures.

B13 – pest pressure fluctuates randomly, but also increases at a rate linked to scientific data.

```
Pressure(1) = (1 + (0.2 * Rnd())) * Pressure(1) * sciData(ThisCropID, 1)
```

B14 – but pest attrition if crop is IR

```
If CropIsIR Then Pressure(1) = 0.925 * Pressure(1)
```

B15 – weed pressure increases exponentially

Pressure(2) = 1.12 * Pressure(2)

```
If CropIsHT Then Pressure(2) = 0.925 * Pressure(2)
```

B16 – drought pressure dependent on region

```
If (iRegion = 1 Or iRegion = 2) Then
Pressure(3) = 1.006 * Pressure(3)
Else
Pressure(3) = 1.003 * Pressure(3)
End If
```

B17 - if strategy chosen, then decision to apply pesticide made when pest pressure reaches threshold

```
If (mgmtData(ThisCropID, 2) And Pressure(1) > 15) Then
    Pressure(1) = 0.3 * Pressure(1)
```

- and cost of treatment/ha is charged.

```
DisAgg(calyr, 3) = DisAgg(calyr, 3) + (econData(ThisCropID, 8) * PlotSize)
End If
```

B18 - if strategy chosen, then decision to apply herbicide made when weed pressure reaches threshold

```
If (mgmtData(ThisCropID, 3) And Pressure(2) > 12) Then
    Pressure(2) = 0.4 * Pressure(2)
```

- and cost of treatment/ha is charged.

```
DisAgg(calyr, 3) = DisAgg(calyr, 3) + (econData(ThisCropID, 9) * PlotSize)
End If
```

B19 - if strategy chosen, then decision to irrigate made when drought pressure reaches threshold

```
If (mgmtData(ThisCropID, 4) And Pressure(3) > 12) Then
    Pressure(3) = 0.2 * Pressure(3)
```

- and cost of treatment/ha is charged.

```
DisAgg(calyr, 3) = DisAgg(calyr, 3) + (econData(ThisCropID, 10) * PlotSize)
End If
```

B20 - find sum of pressures, then look up new predicted yield from formula in worksheet "yield"

```
CurrentPressure = 0
For i = 1 To 3
CurrentPressure = CurrentPressure + Pressure(i)
```

Next i
If CurrentPressure > 99 Then CurrentPressure = 99
Worksheets("yield").Cells(2, 1).Value = CurrentPressure
YieldThisCrop = (Worksheets("yield").Cells(2, 2).Value/100)*econData(ThisCropID, 3)
B21 - at harvest, crop value is given by forecast yield and commodity price.

ValueThisCrop = PlotSize * (YieldThisCrop / 1000) * econData(ThisCropID, 5)