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ABSTRACT 
This opinion proposes: 1) updated statistical guidelines and possible approaches for the analysis of 
compositional, agronomic and phenotypic data from field trials carried out for the risk assessment of GM plants 
and derived foods/feeds; 2) minimum requirements that should be met in the experimental design of field trials, 
such as the inclusion of commercial varieties, in order to ensure sufficient statistical power and reliable 
estimation of natural variability. A graphical representation is proposed to allow the comparison of the GMO, its 
conventional counterpart and the commercial varieties with respect to many variables, taking into account 
natural variability. It is recommended to quantify natural variability from data on non-GM commercial varieties 
treated in the same way and in the same experiments as the GM and the conventional counterpart test materials. 
Only when such estimates are unavailable may they be estimated from databases or literature. Estimated natural 
variability should be used to specify equivalence limits to test the difference between the GMO and the 
commercial varieties. Adjustments to these equivalence limits allow a simple graphical representation so that a 
single pair of confidence limits may be used to display statistically significant differences and to visually assess 
equivalence. The possible types of outcome of this graphical representation are described and a proposal is made 
when further evaluation should be performed. In addition to providing specific recommendations for the 
interpretation of compositional analysis, this opinion highlights some statistical issues of a more challenging 
nature, such as the simultaneous assessment of many characteristics (i.e. multivariate analysis), which will 
require further research. The principles proposed in this opinion may be used, in certain cases, for the evaluation 
of GMOs other than plants. 
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SUMMARY 
The European Food Safety Authority (EFSA) asked its Panel on Genetically Modified Organisms 
(GMO) to investigate whether more detailed guidance could be provided regarding the performance of 
field trials and the analysis of data using appropriate statistical models, with the objective of ensuring 
a more uniform approach and greater transparency in risk assessment of GMOs. In order to carry out 
this investigation, the GMO Panel has convened a dedicated statistics Working Group who addressed 
the issue. A draft document was published on EFSA website from 21 July 2008 until 21 September 
2008 for a 2-month period of public consultation. At the deadline EFSA had received 98 submissions, 
from 9 stakeholders. The table of all received comments together with a summarized response to the 
most relevant ones is published on the EFSA web site: http://www.efsa.europa.eu. Following the 
public consultation, the draft document was revised taking into account all the scientific comments 
that helped enhancing scientific quality and clarity (opinion adopted on 21 April 2009). Subsequently 
the adopted opinion was identified to have an incomplete statistical formula used to calculate 
equivalence limits. Further to adjusting the statistical formula the order of the various sections of the 
opinion was revised to improve logic flow. The present opinion was amended by the GMO Panel on 2 
December 2009. 
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BACKGROUND 
In line with other international guidelines (WHO, 1995; Codex, 2003), the GMO Panel has adopted a 
strategy for the risk assessment of genetically modified organisms (GMO) based on the comparison of 
the GMOs and their derived products with the respective appropriate conventional counterpart(s) 
(Regulation (EC) 1829/2003; EFSA Guidance Document, 2006). The underlying assumption of this 
comparative assessment approach for GM plants is that traditionally cultivated crops have gained a 
history of safe use for consumers and animals, and familiarity for the environment. Although general 
principles for risk assessment are discussed in the Guidance Document (EFSA, 2006), with reference 
to existing internationally agreed test methods and protocols, detailed protocols for carrying out 
specific experiments are not provided. 

With respect to the comparative assessment of GM plants and derived foods/feeds, the Guidance 
Document (Section III, D7) describes the criteria for choosing an appropriate conventional counterpart 
and for performing appropriate field trials, i.e. number of sites, growing seasons, geographical spread, 
replicates, selection of compounds to be analysed etc. Moreover the Guidance Document recommends 
using appropriate statistical tools for the design of field trials and the analysis of data, but no clear 
indication is provided for the definition of appropriate statistical power and the interpretation of 
experiments’ results. 

An important issue to consider is how differences in composition, agronomy and phenotype between 
GM plants and their conventional counterparts should be identified and evaluated with respect to their 
potential impact on humans, animals and/or the environment. In the context of a GMO safety 
evaluation, it is desirable to assess observed differences against quantified natural variation. Natural 
variation is the variability occurring naturally because of differences in the genotypes of plants, effects 
of environmental factors and the interaction between them. Accurate estimation of natural variation is 
challenging and requires an extensive knowledge of the existing natural variation in compositional, 
agronomic and phenotypic parameters of plants. 

Another important aspect is the evaluation of the results of animal studies, e.g. 90-day toxicity studies 
in rodents with whole foods/feed. Such studies are carried out on a case by case basis, as deemed 
necessary. Observed differences in values of biological test parameters between the GM plant derived 
food/feed and its (usually near-isogenic) conventional counterpart(s) should be assessed against the 
natural variation in these parameters. Natural variation may be influenced both by the genetic 
background of the test animals and the genetic background of the feed crops (which may influence 
animal endpoints through a changed diet composition), as well as by environmental factors (housing, 
feeding, test diets etc.). We emphasise that whilst the present opinion makes statistical proposals for 
both the experimental design and analysis of field trials of GM plants for compositional data, these do 
not relate to the design of animal studies, for which recent guidance has been issued separately (EFSA 
GMO Panel Working Group on Animal Feeding Trials, 2008). However, it is the case that the 
statistical approach outlined here for analysis might also be used for the analysis of data from animal 
feeding studies with whole GMO foods/feed, where appropriate and on a case-by-case basis, 
especially if these include commercial varieties with a history of safe use. 

The experience of the GMO Panel gained from the evaluation of GMO applications under Directive 
2001/18 (EC) and Regulation (EC) 1829/2003 since 2003, shows that applicants use widely differing 
protocols to carry out field trials and to analyse the collected data or to evaluate data from animal 
feeding trials. Moreover, different models for statistical analysis of the data have been used (e.g. 
Oberdoerfer et al. 2005, Hammond et al. 2006, Hothorn and Oberdoerfer 2006, Herman et al. 2007, 
McNaughton et al. 2007). Application of different statistical approaches and models may lead to 
different conclusions regarding the risk assessment of GM plants and derived foods/feeds. 

Therefore EFSA and the GMO Panel were of the opinion that it would be worthwhile investigating 
whether more detailed guidance could be provided to applicants regarding the use of appropriate 
statistical models for the analysis of the data from field trials for compositional, agronomic and 
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phenotypic studies and animal feeding trials, and regarding the design of field trials. In the long term 
this should lead to a more uniform approach to be taken by applicants and risk assessors, which may 
contribute to a greater transparency in an accurate risk assessment of GMOs and a faster safety 
evaluation of GMO applications. 

SCOPE 
The scope of this document is the identification of a strategy for better harmonization of approaches 
for data evaluation in GMO risk assessment and a more precise definition of experimental design 
requirements for field trials. Specifically, in order to provide guidance on these issues, the EFSA 
GMO Panel Statistics Working Group pursued the following main objectives: 

1. To review statistical methods and possible approaches, including those applied by applicants, 
which could be appropriate in the framework of the comparative risk assessment of GM plants and 
derived foods/feeds. To explore univariate data analysis methods suitability with respect to 
reliability of conclusions, i.e. the probabilities of occurrence of false positives or false negatives. 
To make an initial assessment of the potential contribution of multivariate methods. 

2. To identify possible strategies to incorporate natural variability of test parameters due to genetic 
and environmental causes. To investigate the suitability and possible application of both the 
equivalence and the difference testing approaches for the risk assessment of GM plants and derived 
foods/feeds. 

3. To undertake a feasibility study regarding the applicability of proposed statistical tools using 
suitable data. 

LIMITATIONS 
The GMO Panel is of the opinion that newly developed guidelines for statistical approaches in 
comparative assessment and GMO safety evaluation should be tested on example datasets. A practical 
example illustrating the proposed methodology on a real-case dataset is provided in this document. 
The GMO Panel emphasises that future scientific developments and the analysis of further datasets 
will inevitably lead to refinements in technique. Consequently, this guidance will be reviewed 
regularly, and the present document represents the first such review. 

It was realised from the beginning that the task of developing guidelines for statistical approaches 
presented two different problem areas: firstly, the development of suitable approaches for single 
endpoints; and secondly, the development of suitable approaches for simultaneous statistical analysis 
of a large set of endpoints. It was agreed that the Working Group would first work on statistical 
approaches for single endpoints, while making an initial assessment of the problems connected with 
analysing multiple endpoints. 

Assessment of statistical approaches for the analysis of data generated for use in environmental risk 
assessment was not included in the mandate of the self-tasking activity and is therefore not discussed 
in this opinion. 
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1. General Principles 

1.1. Introduction 

The objective of this opinion is to propose statistical methods and possible approaches regarding the 
comparative risk assessment of GM plants and derived foods/feeds. Results from any appropriate 
statistical analysis (e.g. confidence intervals, p values, etc.) will need further interpretation with 
respect to a possible impact on human/animal health, particularly because statistically significant 
results are not always biologically or toxicologically relevant. 

In the comparative risk assessment a GMO is compared to an appropriate conventional counterpart or 
control organism/material. The comparison begins by measuring a number of specific agronomic, 
phenotypic, and compositional characteristics of the GM plant and/or derived foods/feed and of its 
non-GM counterpart. The main purpose of the comparative assessment is to demonstrate whether the 
GM plant and/or derived food/feed is different from its appropriate conventional counterpart and/or 
equivalent to commercial varieties, apart from the inserted trait(s). 

Equivalence is in this context defined as the absence of differences other than ordinary biological 
variation and other than the expected differences due to intended modifications. For each chosen 
endpoint, or for groups of endpoints, limiting values for which the difference is acceptable, must be 
determined. These are known as equivalence limits. Statistical methods can be used to assess the 
observed differences against the natural variability observed between commercial varieties. 

Considering each single measured characteristic (endpoint) three different assessments of GMOs may 
be of interest: 

1. The GMO may be shown to be different from the conventional counterpart (proof of difference). A 
difference may constitute a hazard (potential risk) which should be subject to further safety 
evaluation (for this reason it is sometimes referred to as proof of hazard). 

2. Theoretically and in principle, it is possible to establish equivalence limits prior to the comparative 
risk assessment. Then, the GMO may be shown to be within these equivalence limits (proof of 
equivalence). Equivalence limits may be derived in absolute terms, or as relative deviations from 
the conventional counterpart, or as relative deviations from the overall mean of commercial 
varieties. Established equivalence of a GMO has been interpreted as relevant for subsequent 
toxicological risk assessments. 

3. However, in practice, it must be emphasised that equivalence limits have almost never been 
established. Therefore, commercial varieties are to be included in the experiments, to allow a direct 
comparison of the GMO with the commercial varieties. This may be seen as a test of the difference 
between GMO and commercial references, but it should also be recognised that the commercial 
varieties in the experiment allow the estimation of equivalence limits, which are subsequently used 
for assessing the equivalence of the GMO. 

In the future, as databases for compositional data are extended and experience gained from further 
field trials, it may be come possible to establish equivalence limits as in point 2 above. Then, it should 
be noted that the approach followed for their calculation will affect the final interpretation of the 
results. If equivalence limits have been established as relative deviations from the conventional 
counterpart, the outcome of the equivalence test will establish equivalence between the GMO and its 
counterpart. If on the other hand, equivalence limits have been established as relative deviation from 
the mean of commercial varieties, the outcome of the equivalence test will establish equivalence 
between the GMO and the set of commercial varieties. To cover the possibility of both cases 2 and 3 
above, in text where it is unspecified how equivalence limits have been established (whether the 
conventional counterpart or the set of commercial varieties is meant), the word ‘reference’ will be 
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used in this document to discuss matters that are applicable to both situations. Also, in the text below 
the term 'test materials' is used to denote: the GM crop; its conventional counterpart; the set of 
commercial varieties; and any additional test materials used because of the need for additional 
comparators. 

Statistical methodology should not be focussed exclusively on either differences (1) or equivalences 
(2/3), but should provide a richer framework within which the conclusions of both types of assessment 
are allowed. Both approaches are complementary: statistically significant differences may point at 
biological changes caused by the genetic modification, but may not be relevant from the viewpoint of 
food safety. On the other hand, equivalence assessments may identify differences that are potentially 
larger than normal natural variation, but such cases may or may not be cases where there is an 
indication for true biological change caused by the genetic modification. A procedure combining both 
approaches can only aid the subsequent toxicological assessment following risk characterization of the 
statistical results. 

Section 4.1 lists the possible types of outcome if both approaches are considered simultaneously. 
Briefly, there will be categories with a clear conclusion on equivalence, and categories where the 
statistics do not lead to an unambiguous result. This possibility of ‘grey’ outcomes between ‘black’ 
and ‘white’ outcomes is characteristic of any statistical approach, and such an outcome is an indicator 
of scientific uncertainty rather than failure of the method. 

Stringent use of the concept of equivalence would require the necessity of proving equivalence for all 
endpoints simultaneously (global equivalence). Such a proof of global equivalence turns out to be 
technically difficult to undertake. While the provision of methodology for a global equivalence 
assessment might prove of some use in the long-term, the mandate of the Working Group specifies 
that only an initial assessment of such methodology is made. In this opinion the focus is on statistical 
methods applied to single endpoints. 

As stated above, very few, if any equivalence limits for measurable endpoints have been established 
within the scientific literature. Therefore the statistical approach should be sufficiently flexible to 
address such situations, as will be discussed further in Section 3.3. For example, equivalence limits 
may be estimated from concurrent data on commercial varieties or other available information may be 
used where appropriate in the future. When there is serious uncertainty about appropriate equivalence 
limits, it may be useful to present results for several possible values of the equivalence limits. 

1.2.  Error types and statistical power 

Equivalence testing contrasts with much of other biological experimentation: in the former the risk 
assessor seeks assurance that a hypothesis of equality of GMO and its conventional counterpart is 
approximately true, although strict equality can never be proven. By contrast, most biological 
experiments are designed to reveal and quantify differences between varieties and controls. In any test 
of a null hypothesis there are two possible types of errors, which are mutually exclusive. A so-called 
‘Type I’ error occurs if the null hypothesis is erroneously rejected when it is actually true. A ‘Type II’ 
error occurs when the null hypothesis is not rejected even though it is actually untrue. In a traditional 
proof-of-difference approach the null hypothesis is taken to be equality of GMO and non-GM control, 
therefore not finding a true difference is a ‘Type II’ error. In a proof-of-equivalence approach the null 
hypothesis specifies the existence of a difference of a given magnitude, and concluding equivalence 
which actually does not exist is a ‘Type I’ error. 

It is relatively simple for scientists to set the Type I error rate for an experiment, but it is much more 
difficult to estimate the Type II error rate accurately, let alone set it to a desired value. Traditionally, 
in many experimental disciplines the Type I error rate, α, sometimes called the size of the test, is set to 
α = 0.05. Such tests, at the so-called ‘5% level’ are conventionally considered as acceptable in risk 
assessment. However, if in safety testing we retain the traditional null hypothesis of zero difference, 
the Type II error (i.e. accepting that GMO and conventional counterpart yield equal responses when 
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there is in fact a difference) is the most serious and relevant one (e.g., Hill and Sendashonga, 2002). 
Clearly, poorly designed experiments, or those with inadequate replication, even though using a 5% 
Type I error rate, have such large Type II error that they lack the ability to discriminate between the 
GMO and its conventional counterpart. Ignoring Type II errors might lead to an erroneous indication 
of safety, while in reality the experiment simply was not sensitive enough to detect adverse effects. 
The complement of the probability of Type II error is termed ‘statistical power’. Statistical power is 
therefore the probability of detecting a difference between GMO and its conventional counterpart, 
when there is a real difference of a certain size to detect; it is often quoted as a percentage. The risk 
assessor must ensure that an evaluation has sufficient power to provide reasonable evidence of 
equivalence. A level of 80% is usually considered to be the acceptable minimum degree of statistical 
power and optimal experimental design should be directed to attain this level. Statistical power 
depends, amongst other things, upon the chosen experimental design, the magnitude of the variety 
difference, the baseline variability of the experimental units, the size of the test and the replication of 
the experiment. In general, other things being equal, a decrease in α will generally lead to a decrease 
of power. 

A power analysis, executed when the study is being planned and prior to its start may be used to 
estimate power, to choose appropriate replication and to give confidence that the experiment will 
detect any significant effect that is present. For example, Perry et al. (2003) reported a power analysis 
performed prior to an experiment to assess the risk of indirect effects on farmland wildlife of 
genetically modified herbicide-tolerant management systems of weed control, compared to current 
conventional farming. 

A common approach to deal with Type II error in proof-of-difference tests, but one of dubious 
validity, is the calculation of statistical power from the experimental data obtained (so-called 
retrospective or post-hoc power analysis). In this approach an applicant may seek to compensate for a 
possible lack of power in a relatively poorly replicated experiment by adjusting the size of the 
experiment (the Type I error rate), which uniquely determines the retrospective power of the 
experiment. Problems associated with such a strategy were identified, for example by Schuirmann 
(1987), Hoenig and Heisley (2001) and by Walters (2008). Tempelman (2004) pointed out how a 
poorly executed experiment would be rewarded a greater chance of concluding equivalence. It must be 
emphasised that one of the approaches proposed in this document, which specifies explicit equivalence 
limits and then employs two types of hypothesis test, overcomes the problems mentioned above. 

Notwithstanding the problems of retrospective power analyses, it can still be useful to reassess studies 
for which a prospective power analysis was done, to check model assumptions and parameters 
estimated a priori. For example, Clark et al. (2005, 2007) assessed the results and power analysis of 
the UK Farm Scale Evaluations. 

1.3. Decision analysis, tests and confidence intervals 

The result of a risk assessment should be a risk characterization to be used by risk managers for 
decision making. From a statistical point of view there are several approaches that can be taken to 
decision problems. In the most general form a decision theoretic approach can be followed (see e.g. 
Lindley 1998). A more classical approach is hypothesis testing. 

The decision analysis approach of Lindley (1998) requires the specification of relative losses 
connected with the two types of erroneous decisions. In case of application to GMO risk assessment, 
the decision analysis approach would require answering the following question: what is the relative 
loss when approving a specified use of a GMO that is not equivalent, in comparison to the loss when 
prohibiting the use of a GMO that in fact is equivalent? Although the GMO Panel considers this 
interesting from a statistical point of view, this is out of the scope of the risk assessment process. 

Hypothesis tests can be performed in isolation (purely as a process of rejecting or not rejecting a null 
hypothesis) or they can be performed after the construction of confidence intervals. It is well-known 
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that there is usually symmetry between hypothesis testing and the construction of confidence intervals. 
In fact, a 95 % confidence region is the set of null hypothesis values that would not be rejected by a 95 
% confidence test using the same data. The use of point estimates and associated confidence intervals 
has been advocated earlier (e.g. Gardner and Altman 1986, Kieser and Hauschke 2005, Newman 
2008). 

There are several advantages connected to the use of confidence intervals for testing hypotheses: 

1. The result is not only a yes/no decision about rejecting the null hypothesis, but it gives a more 
detailed description of the magnitude of the difference between the GMO and its conventional 
counterpart as well as the uncertainty about this difference. 

2. When two different hypotheses have to be tested (as is the case when both the proof-of-difference 
and the proof-of-equivalence tests are done) then only one confidence interval needs to be 
constructed. 

3. It is possible to prepare graphical overviews, which is especially useful when there are multiple 
endpoints to be tested. 

4. Confidence intervals can be constructed even in the absence of clearly defined null hypothesis 
values (e.g. in the absence of equivalence limits). 

For these reasons the GMO Panel proposes the use of confidence intervals as a standard instrument for 
the testing of differences as well as equivalence. Of course, because of the fundamental equivalence 
between confidence intervals and tests, the results can be supplemented with test results (e.g. in the 
form of p values) when this is considered useful. 

Conventional confidence intervals are two-sided, meaning that they have a lower and an upper limit. 
The concern may be a potential difference between a GMO and its conventional counterpart in one 
direction only (either an increase or a decrease). In such cases a one-sided confidence limit is more 
appropriate, having more power at the same confidence level. 

When a multiplicative scale is appropriate, the GMO Panel proposes confidence intervals for the ratio 
of the GMO to its conventional counterpart and as long as the data are in reasonable agreement with 
the necessary conditions for statistical analysis of that ratio (see Section 3.1 for further discussion). 
The advantage of considering ratios is that often endpoints vary naturally on a multiplicative, rather 
than additive scale. On such a dimensionless scale, treatment effects are expressed in terms of 
proportional or percentage change; these can be easily compared over multiple endpoints. Several 
approaches for relative confidence intervals are available, depending on the assumed characteristics of 
the endpoint: i) lognormal distribution, ii) normal distribution and iii) any continuous distribution. For 
counts and proportions analogous relative confidence intervals are available as well (e.g. for risk ratios 
or odds ratios). 

Statistical methods are described in more detail in Section 3. 

2. Proposals concerning field trial design 

2.1. Experimental design 

Field experiments are to be replicated at multiple sites. At each site a field trial is to be conducted with 
the varieties randomized over plots in multiple blocks (or replications). The statistical analysis of data 
from the experiments for comparative risk assessment is mainly concerned with studying the average 
difference and the average equivalence (see Section 4.2) over sites. Here, the term ‘average 
equivalence’ is adopted in the sense used in the drug testing literature (e.g. Wellek, 2002). 
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Nevertheless, applicants should allow for the possibility of checking for possible site-specific effects, 
i.e. genotype by site interactions. If genotype x site interactions are identified, then it is important that 
each individual site trial is sufficiently well-replicated to allow a credible site-specific analysis at each 
of the sites. Therefore the requirements for the levels of replication are based on power considerations 
for single field trials (per site). 

A good discussion of field experimental design, of some relevance for risk assessment of GMOs, can 
be found in Anon (2007). This document provides advice for the choice of adequate levels of 
replication in field trials, for appropriate forms of compositional, phenotypic and of agronomic 
analysis. 

The experimental design problems encountered in comparative assessment are partly similar to those 
encountered in other studies (Basford & Cooper 1998, Spilke et al. 2005). GM crops usually have also 
to fulfill the requirements for variety registration before being allowed onto the market for field 
cultivation. In the EU, as in a number of other countries, crop field testing for variety registration 
comprises two aspects. First, the new variety should be “novel” and assessed and declared as suitably 
levels of “distinctness, uniformity, and stability” compared to varieties of common knowledge. These 
requirements comply with the general formats and crop-specific guidelines published by the 
international plant variety protection agency UPOV (http://www.upov.int). UPOV recommends the 
use of randomized block designs for most field trials with each block containing separate plots with 
different varieties, over several seasons and locations. In addition, from an agronomic perspective, the 
crop should have “value for cultivation and use”, i.e. it should have an advantage in terms of yield 
and/or quality over currently used varieties Variety registration in the EU is controlled on a crop by 
crop basis with respect to numbers of year of testing, locations and the design and replication of the 
trial (see details from the EU Community Plant Variety Office, http://www.cpvo.europa.eu). 

Many agronomic and phenotypic endpoints such as plant height, kernel weight and leaf colour may be 
studied within the same experimental design as for the study of compositional endpoints. 
Occasionally, some endpoints, such as abiotic stress for which conditions have to be controlled, may 
require separate experiments. Even in these cases, the same principles for design of compositional 
studies outlined here should be followed. For example, designs for agronomic and phenotypic 
endpoints should include commercial varieties to allow equivalence testing. 

In an extensive experiment to assess the impact of GM crops on UK wildlife, the problems described 
by Perry et al. (2003) included: (i) the need to decide on the size and location of experimental unit; (ii) 
the need to choose plots, fields and farms that were representative of the regions for which inferences 
would be made; (iii) the need to avoid selection bias in randomization of varieties to experimental 
units; (iv) the need for an auditable procedure to ensure neither the experimenter, recorder or 
biometrician could influence the randomization; (v) the need for infrastructural underpinning of 
analysis including database management, data verification, punching, storage, integrity and extraction; 
(vi) the desirability of a common approach to analysis using automated software where appropriate, 
especially where the number of variables tested is large. However, this experiment was principally 
focussed on assessing environmental risk for non-target organisms, so is only weakly applicable to 
food safety issues. 

2.2. Power of field experiments 

Perry et al. (2003) conducted a power analysis to inform replication levels in a study involving GM 
crops, although their study was concerned with environmental and not food-feed risk assessment. 
They aimed to provide about 80% power for each analysis for the most important response variables. 
In their study, Perry et al. noted that: (i) it was difficult for biologists to answer in quantitative terms 
the question: ‘what degree of variety difference do you consider important?’; (ii) since power is a 
continuum that varies gradually with sample size, there is no single threshold level of replication 
below which an experiment is too poorly resourced to be worth conducting and above which it is 
satisfactory; (iii) in experiments with many response variables power must vary between them and 
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cannot be optimised separately for each; and (iv) for variables likely to have non-normal distributions, 
power estimates might require special calculations. It proved possible to estimate quite accurately the 
dependence of power on some of the variables mentioned in the paragraph above, namely the 
magnitude of the difference between varieties, the baseline variability of the experimental units and 
the replication of the experiment. However, Perry et al. (2003) demonstrated that power was model 
dependent, emphasising the need for model checking. Also, they estimated to what degree power was 
dependent on the magnitude of the variables measured, emphasising the need to achieve adequate 
samples. 

For risk assessment of GM crops we require good experimental designs to perform compositional, 
agronomic and phenotypic analysis. The primary difficulty listed above, the lack of ability to specify 
the difference between varieties required to be detected, is just as problematic for field trials for 
compositional, agronomic and phenotypic analysis. Furthermore, since experience has shown that 
generalized guidance on the need to consider power rarely has the effect desired, it is necessary to 
replace this with specific recommendations concerning the design of the field trials and minimum 
amounts of replication. The motivation behind the specific replication called for is discussed in the 
next section. 

2.3. Choice of levels of replication 

2.3.1. Number of replications per site 

The choice of levels of replication for a field trial should ideally be based on a full power analysis, 
conducted prior to finalising the design. Otherwise, it may be possible to reach a decision based upon 
the related requirement that confidence intervals on differences between varieties should be no more 
than some predetermined width. Failing this, for reasons discussed above, this section considers the 
relationship between the number of varieties and the degree of replication in relation to the resulting 
degrees of freedom for error in a simple single-site analysis for a test of difference where all factors 
are assumed to have fixed effects. This is a simplification that ignores two important issues. The first 
is that we recommend a test of equivalence as well as a test of difference, and the second is that we 
recommend the use of random effects to model commercial varieties and possibly also environmental 
factors. Therefore we recommend the use of mixed models. However, some simplification is 
unavoidable, since neither sufficient data nor theoretical studies are available to allow us to make 
recommendations that are statistically optimal in the strict sense of the term. 

The approach is based on the idea that the number of degrees of freedom for error may provide a 
reasonable criterion for the choice of the number of replications per site. For a useful statistical 
analysis to be made, the number of residual degrees of freedom (df) must be sufficiently large. For 
example, in an experiment with 8 varieties and 4 replicates with a randomized block design, there are 
21 residual df. These are calculated as: total df (32 - 1 = 31) minus variety df (8 - 1 = 7) minus blocks 
df (4 - 1 = 3), i.e. 31 - 7 - 3 = 21. With only 4 varieties and 4 replicates, the corresponding figure is 15 
- 3 - 3 = 9, generally considered of marginal use. Residual df should be increased by increasing the 
replication; often this will entail using extra blocks in a randomized block experiment. 

The number of desirable residual df depends on the questions asked, the form of the data, the degree of 
precision (power) required of the trial and other contingencies. For example, for components where 
many values below a certain level are only reported as “less-than”, it can be expected that the 
estimated residual df from the experimental design will be too low, and in general more replication 
will be necessary (as well as an adapted method of statistical analysis). Furthermore, whilst it may be 
the case that for many endpoints, typical values of CV% for field trials of 2-12% may be achieved, for 
some endpoints such as secondary metabolites, CV% may be much larger. Expert statistical advice 
should be sought if in doubt. However, in very general terms, experience with trials on efficacy 
evaluation over many years has shown that it is inadvisable to lay out trials with less than 15 residual 
df. More degrees of freedom are usually required for a relatively highly-variable endpoint such as a 
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count of the abundance of an organism the distribution of which may be highly skew, if power is to be 
similar over all endpoints. 

It is stressed that optimal designs for mixed models are still an open problem, and whereas general 
guidance is given now, the precise optimal design for each particular situation may only emerge as a 
result of future research in this area, on a case-by-case basis. In general, an investment in more sites 
and/or replication within sites generally improves any given design. 

The choice of the experimental design has an influence on the number of residual df. The fully 
randomized design gives the maximum number of df. The randomized block design uses some of 
these df to allow for the heterogeneity of the environment (such as that along one gradient); the Latin 
square design uses still more, to account for heterogeneity along two gradients. The split-plot design 
uses df to allow for the possible sources of more than one component of variation. Incomplete block 
designs are used when the number of varieties in a block is so great that homogeneity of plot variance 
may be compromised. The experimenter must try to leave the maximum number of df to estimate the 
residual variation, whilst choosing an optimal design to minimize that variation, by allowing for all the 
known sources of heterogeneity. Whatever the design, the concept of randomisation is crucial to 
ensure a proper basis for the estimation of variability. In particular the commercial varieties should be 
randomized in the same way as are the GM plant and its comparator(s). 

In general, there may be results from previous experiments to indicate the likely variability of 
observations. If such data exist, it is possible to make some judgement as to the design and size of 
experiment needed to give the required power. Various computer-based or graphical systems are 
available to assist in determining the number of replicates needed; these use the magnitude of the 
difference required to be estimated, or the level of significance required for that difference, and the 
precision expected. 

2.3.2. Number of commercial varieties 

Information on variability between commercial varieties is clearly very important in the setting of 
equivalence limits. It is good statistical practice to include commercial varieties fully randomized 
within each of the set of field trials, in addition to the GM plant, its conventional counterpart, and, 
eventually, additional comparator(s). Again, we stress that there is insufficient information on which 
to base a determination of the statistically optimal number of commercial varieties per trial (i.e. per 
site in a multi-site experiment). However, for a good estimate of variability between varieties we 
consider that data should be gathered from at least three varieties from each trial. Further, since 
varieties are intended to be representative of the sites at which they are grown, and since sites within 
the trials are intended to represent the full range of receiving environments, it is likely that different 
varieties will be used in different trials (i.e. at different sites), and that the range of varieties across the 
set of trial sites will be larger than at any individual trial site. Six varieties overall should provide a 
pragmatic minimum basis to estimate variability that will aid the setting of equivalence limits. 

2.3.3. Number of sites 

Environmental variation is manifest on two scales: site-to-site and year-to-year. Many years are 
required to capture adequately the full range of the year-to-year variation. Since the primary concern is 
not environmental variation per se, but whether potential differences between the test materials vary 
across environmental conditions, the approach recommended here defines a minimum number of sites 
for replication of the field trials, but allows flexibility in the number of years over which those trials 
are conducted. In the case that sites cover a very restricted geographic range, then replication of trials 
over more than one year is required. 

Similar pragmatic considerations as described above for the number of commercial varieties have been 
used to recommend a minimum number of sites for the set of trials. 
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Each field trial must be replicated at a minimum of eight sites, chosen to be representative of the range 
of likely receiving environments where the crop will be grown. The trials may be conducted in a single 
year, or spread over multiple years. The commercial varieties may vary between sites, but unless there 
is explicit justification there must be at least six different commercial varieties used over the entire set 
of trials. 

Experiments may have to be replicated through time because the effects of varieties may alter with, for 
example, seasonal temperature, photoperiodic effects, etc. Temporally, sample units may be 
autocorrelated if placed too close together in time. Then, the information in successive samples is less 
than that in two separate samples; an example might be the increase in insect damage by some pest. 
Repeated measures analysis may be used to analyze such autocorrelated responses, sometimes taken 
on the same individual, within a classical analysis of variance framework. 

2.4. Experiments with multiple GM crops 

When it is desirable to assess several different GM plants for one crop species (e.g. Zea mays) the 
production of material for the comparative assessment of these different GM crops may be produced 
simultaneously at the same sites and within the same field trial by the placing of the different GM 
plants and their appropriate comparator(s) in the same randomized block. 

In order to provide clear recommendations that will lead to robust experiments in the majority of 
cases, some simplifications are required that are not strictly necessary from the point of view of 
statistical design theory. For example, for simplicity of the experimental design it could be 
recommended that two conditions be met: (i) each of the appropriate conventional counterpart(s) must 
always occur together with its particular GM crop in the same block; (ii) all the different GM crops 
and their conventional counterpart(s) and all the commercial varieties used to test equivalence with 
those GM crops must be fully randomized within each block. 

As an example, suppose at a particular site, GM1, GM2 and GM3 denote three different GM maize 
crops; NIC1, NIC2 and NIC3 denote their appropriate respective conventional counterparts; and that 
CV1, CV2, CV3 and CV4 denote four commercial varieties to be used for the estimation of 
equivalence limits and equivalence testing of the three GM crops. Then, assuming the minimum 
number of four randomized blocks is used, one example of the randomized allocation of plants to plots 
within blocks could be: 

Block 
Plot 

1 2 3 4 5 6 7 8 9 10 

1 GM2 CV2 CV1 GM3 NIC3 NIC1 CV3 GM1 NIC2 CV4 

2 CV2 GM2 CV3 NIC3 NIC2 GM1 NIC1 CV4 CV1 GM3 

3 NIC1 NIC3 GM1 CV1 GM3 NIC2 CV2 CV4 CV3 GM2 

4 GM3 GM2 CV1 NIC1 CV2 NIC2 NIC3 CV3 CV4 GM1 

 

It is recognised that arguments concerning degrees of freedom would show that, for the purposes of 
statistical analysis, the most efficient approach would be to use all this information simultaneously, as 
this would help to reduce baseline residual variance. However, the EFSA GMO Panel is of the opinion 
that, since it is necessary to maintain transparency and verifiability, currently the GM crops should all 
be assessed separately. Hence, for GM1, only plots 2,3,6,7,8,10 in block 1 should enter the analysis; 
for GM2, only plots 1,2,3,7,9,10 in block 1, should enter the analysis, etc. 
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If, and only if the number of plots per block required for such a trial were to exceed 16, then a partially 
balanced incomplete block design may be used, if desired, to reduce the number of plots per block, by 
excluding some of the GM crops and their appropriate conventional counterpart(s) from each block. 
Again, for simplicity of the experimental design, it could be recommended that two conditions be met: 
(i) each of the appropriate conventional counterpart(s) must always occur together with its particular 
GM crop in the same block; (ii) all of the commercial varieties must appear in each of the incomplete 
blocks and be fully randomized with the GM crops and their conventional counterparts. 

For example, a trial at a site with 5 commercial varieties, each to be tested for equivalence against 6 
different GM crops, each of which had its conventional counterpart, would require a minimum of 4 
randomized blocks each with 17 plots per block. These could be replaced, if desired, by 6 incomplete 
randomized blocks each of 13 plots per block, each comprising the 5 commercial varieties plus 4 of 
the 6 GM crops, each with its conventional counterpart. As already stated above for the case of a 
single GM crop assessment, it should be stressed that when several different genetically modified 
crops are used simultaneously at the same site in this way, all of the crops involved and all of the 
commercial varieties in the trial must be appropriate for that site, and the requirement of a minimum of 
4 replicates per site and of 8 sites in total is unchanged. 

An additional possibility is to adopt a linked structure, where some (but not all) of the commercial 
varieties would be included as usual in the same set of randomized and replicated field trials with one 
GM and its comparator(s), and then (some of) these commercial varieties may also be used in another 
set of trials and with perhaps still more commercial varieties, so that the incidence of treatments might 
be as follows: 

field 

trials 

set     Varieties in the set    Commercial Varieties           

                             

1       GMO1 comparator1      1 2 3 

2       GMO2 comparator2          2 3 4 5 

3       GMO3 comparator3      1       5 6 7 

4       GMO4 comparator4                   6 7 8  

 

Then the linkages between the commercial varieties over the field trial sets would allow the recovery 
over inter-set information yielding a more efficient estimate of between commercial variety variance, 
corrected for differences between the sets. Of course, within each set of field trials there must be 
consistency with the requirements given earlier. 

2.5. Experiments with multiple comparators 

It may be required to use more than one test-material for comparison (i.e. combination of genetic line 
and treatment), as for example when herbicide tolerant systems are assessed. Then, three test materials 
are compared: the GM plant exposed to the intended herbicide, the conventional counterpart treated 
with conventional herbicide management regimes and the GM plant treated with the same 
conventional herbicide(s). Such comparison allows the assessment of whether the expected 
agricultural practices influence the expression of the studied endpoints. Such extra comparators should 
be fully randomised and replicated, as are the other test materials. 
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3. Statistical approaches 

3.1. Introduction: choice of model and processing of data 

Measurements are made on several scales (continuous, ordinal, quantal, binary, count, multinomial). A 
statistical model appropriate for the scale used should be chosen. In this opinion we focus on 
measurements made on a continuous scale, which is appropriate for most compositional, agronomic 
and phenotypic variables in field studies, and chemical analyses in blood and urine traits measured in 
animal studies. For measurements made on other scales it is often possible to devise similar statistical 
approaches as described here. 

It is often appropriate to transform data before standard statistical methods are used. For example, 
many biological effects are manifest on a multiplicative scale rather than on an additive scale. 
Differences are commonly expressed as a percent change, i.e. as relative differences (ratios) rather 
than absolute differences. However, most statistical models are additive models, they are used to 
estimate or test absolute differences. A good choice of a scale for statistical modelling is therefore 
important. A logarithmic transformation of the data may be appropriate because of the basic property 
that it transforms a multiplicative model into an additive model, and thus relative differences into 
absolute differences )log()log()/log( BABA −= . Only when reporting results (graphs, tables) these 
should be back-transformed to the original scale. 

Another common phenomenon is inequality of variation (heteroscedasticity), whereas many statistical 
models assume equal variance (homoscedasticity) among groups of observations. Often the standard 
deviation increases with the mean, but the coefficient of variation is approximately constant. In these 
cases a logarithmic transformation is appropriate because the transformed data will become 
homoscedastic. 

Continuous parameters in field trials and animal studies often have a skew distribution, whereas many 
simple statistical models need the assumption of a symmetric distribution. When the data are 
reasonably well described by a lognormal distribution, as it seems to be often the case with 
compositional data, a logarithmic transformation is appropriate to obtain an approximately normal 
distribution. 

Whereas there are many cases in which the logarithmic transformation is an appropriate pre-
processing of continuous data, there may be situations where it is inappropriate, and it should never be 
applied without thought. For example, when values are zero, the logarithmic transformation cannot be 
applied. Also the assumption of a constant coefficient of variation typically breaks down at very low 
measurement values, and the log-transformed data may show more variability than at higher levels. In 
general the appropriateness of the chosen statistical model should be checked, at least by graphical 
techniques, such as plots of residuals against fitted values. 

There may therefore be occasions where the use of normal distribution based models on log-
transformed data is not appropriate, either because the data are of a fundamentally different nature 
(quantal data, ordinal data, counts), or there are outliers, or because assumptions are not fulfilled, e.g. 
the assumption of lognormality may not hold. Given enough data the assumption of normality may be 
checked using standard normality tests (e.g. Shapiro-Wilk test, D’Agostino test), but the amount of 
data available in practical cases is usually too small for this. Another problem may be that even after 
logarithmic transformation the variances are not homogeneous, and also for this case tests are 
available (e.g. Levene test). Whereas the relatively simple models proposed in this opinion may not 
suffice in such situations, it is stressed that the general principles remain valid. 

Outlying observations can distort statistical analyses. Applicants should investigate whether this might 
be a problem. In general graphical approaches are advised, e.g. by looking at residual plots. Rejection 
of outliers is only allowed when there are biological/technical reasons. Outliers should always be 
identified. Typically outlier tests play a minor role: their power is limited at the small sample sizes 
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which are typically available. Outlier tests should never be applied for automatic outlier removal. 
When outliers have been found in the data, in general it is required to provide analyses based on the 
data with and without outliers. Finally, in risk assessment it may occur that results which seem to be 
outliers are in reality the effects of rare but very real anomalous toxicological reactions. An outlying 
observation may thus be the only important point in the data set, and toxicological rather than 
statistical expertise is needed to judge this. 

There may be more complex reasons why the data fail to have a simple distribution. For example the 
dataset may be a mixture of responding and not responding animals (as in the tolerance model of 
toxicology). In such cases a simple statistical approach may not be feasible, and more complex 
methods may be needed. 

3.2. Comparative assessment when equivalence limits are available 

In this section we treat the situation that would occur if equivalence limits were already available. It is 
reiterated that for almost endpoints this is not currently the case. For the estimation of equivalence 
limits, see Section 3.3. 

3.2.1. Equivalence limits 

In order to test equivalence in a statistically rigorous manner it is necessary to specify for each tested 
variable a maximum acceptable difference, set either as the difference θ  between the GMO and its 
conventional counterpart, or as the difference 'θ  between the GMO and the mean of commercial 
reference varieties. As emphasised above, consideration of quantities related to θ  in this section refer 
to future scenarios where equivalence limits are assigned set values; consideration of quantities related 
to 'θ  are covered in Section 3.3, where the estimation of equivalence limits is discussed. It is possible 
that θ  will be a value on a transformed scale. For a logarithmic transformation θ  corresponds 
therefore to a maximum acceptable percent change. In principle the limits on the difference can be 
different in the positive and the negative direction; these are termed, respectively, the ‘upper 
equivalence limit’, Uθ , and the ‘lower equivalence limit’, Lθ . 

Customarily, for example in pharmaceutical applications, the expression of equivalence limits 
(maximum acceptable difference) is done in a relative way, as a percentage (e.g. 20 % difference) or as 
a multiplication factor (e.g. 1.25). Note that these two ways of specification are fundamentally 
different, because the use of a multiplication factor translates into asymmetrical percentages. For 
example, the multiplication factor 1.25 = 5/4 corresponds to +25 % or -20%, and a multiplication 
factor 2 corresponds to +100% or -50%. When comparisons between GMOs and comparators are 
made by forming a ratio of the respective values, then this corresponds to a difference, Δ , after 
logarithmic transformation, and a multiplication factor (e.g. 1.25) transforms to symmetrical limits 

Uθ  = ln(1.25) = 0.223 and Lθ  = ln(1/1.25) = -0.223. On the other hand a specification of ±20% would 
correspond to asymmetrical limits Uθ  = ln(1.20) = 0.182 and Lθ  = ln(0.80) = -0.223. 

The use of a logarithmic scale is in correspondence with the fact that, most often, limits for continuous 
variables will be available as relative changes of the GMO with respect to its conventional counterpart. 
Such relative differences on the original scale (e.g. the GMO mean should be between -20 % and + 25 
% of the conventional counterpart mean) correspond to absolute differences on the logarithmic scale. 
A further advantage of relative effects is the comparability of the confidence intervals of multiple 
endpoints. 

In the field of GMO risk assessment, Hothorn and Oberdoerfer (2006) and Oberdoerfer et al. (2005) 
have chosen to apply equivalence limits of ±20% (range for the GMO mean of 80% to 120% of the 
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comparator mean), referring to FDA (1997) and Nordic Council (2000). Actually, FDA (2001) 
mentions, for the case of area under the curve (AUC) of serum content of generic drugs, usual limits 
based on a factor 1.25, which leads to a range from 80% to 125% of the reference value. These limits 
are based on analysis of bioavailability studies with drugs administered to humans. This interval is 
also prescribed as a standard for certain pharmacokinetic parameters in drug testing by EMEA (2001). 
It is difficult to find further justification for this choice; it is standard only in pharmaceutical 
applications. It would seem impossible to state that such values would also be optimal for, say, the 
composition of raw agricultural commodities or for results from animal studies. Moreover, in 
pharmaceutical research comparisons are made within patients (e.g. using cross-over designs), whereas 
in field trials comparisons are made within combinations of sites and years, and in animal studies 
comparisons are made between different groups of animals. It is not at all obvious that this would lead 
to a similar variation in general. Further investigations for the definition of suitable ranges are needed 
in this area. 

3.2.2. Single endpoints in simple two-group designs 

For simplicity we first sketch the proposed approach for the simplest situation, where measurements 
on the GMO and its conventional counterpart are available from two unstructured groups. Data from 
animal feeding studies may give data of this type. In the next section we discuss more complicated 
designs such as are usual for field trials. 

When testing for differences (proof of difference approach) the null hypothesis and alternative 
hypothesis are: 

0:       .        vs0 1:0 ≠Δ=Δ HH   

or, in words, the null hypothesis is “no difference between the GMO and its conventional counterpart” 
against the alternative hypothesis: “difference between the GMO and its conventional counterpart”. 
Note that this two-sided test (both increased and decreased endpoints should be detected) is the most 
common case, but if it is a priori known that differences can only be in one direction, then it can be 
easily adapted to one-sided versions (to detect only increases or decreases). 

A statistically significant test result identifies a difference, whether it is practically important or not. 
For each test with significance level 1 - α (e.g. 95 %), there is a limited Type I error probability (α, the 
size of the test) that a significant result is obtained (i.e. a difference is found) whereas no difference 
exists in reality. However, these tests do not restrict the Type II error probability (β) of finding no 
significance whereas in reality there is a difference. So the absence of significant results is not a proof 
for equivalence of the GMO and the conventional counterpart, or ‘‘absence of evidence is not 
evidence of absence’’ (Altman and Bland, 1995 and 2004). 

When testing for equivalence (proof of equivalence approach) the null and alternative hypotheses are: 

ULUL HH θθθθ <Δ<≥Δ≤Δ :       .        vsor  : 10    

Or, in words, the null hypothesis is “the difference between the GMO and its reference is at least a 
certain minimum size” (i.e. there is non-equivalence) against the alternative hypothesis: “there is no or 
at most a small difference between the GMO and its reference”. In this testing procedure we need a 
significant result (rejection of the null hypothesis) in order to conclude that the GMO and the 
reference are equivalent. Thus, there is a limited Type I error (α) that equivalence is concluded 
whereas a difference larger than this limit value, of a certain minimum size, exists in reality. This way 
of testing equivalence is used in pharmaceutical applications (FDA, 2001; EMEA, 2001). 

Both the difference test and the equivalence test can be implemented using the calculation of 
confidence intervals. The reasons why this is preferable were discussed in Section 1.3. 
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In the case of difference testing a (1 - α) confidence interval on Δ  can be calculated, and the null 
hypothesis will be rejected when the complete interval does not include 0. 

In the case of equivalence testing the approach, also called the two one-sided tests (TOST) approach 
(Schuirmann, 1987), can be performed by computing a (1 - 2α) confidence interval on Δ , and 
rejecting the null hypothesis when the complete interval falls between the equivalence limits. In 
equivalence studies the choice of a 90% confidence interval is customary (FDA, 2001; EMEA, 2001) 
as it corresponds with the customary 95% level for statistical testing. However, it should be stressed 
that preference for levels of confidence is not a statistical decision, rather one to be made by risk 
managers. The choice made in this opinion is only made for reasons of simplicity. 

Rather than calculating confidence intervals separately with different confidence levels for the 
difference and the equivalence tests, the GMO Panel proposes to calculate by default two-sided 90% 
confidence intervals. This implies that each (two-sided) difference test will have a 90% confidence 
level, and each equivalence test a 95% confidence level. If it has been decided a priori that only 
deviations in one direction are of importance, then one-sided difference tests are appropriate. The 
confidence level of the procedure where only one of the limits of the two-sided 90 % confidence 
interval is inspected is also 95%. 

Assuming a simple two-group design of the experiment and a lognormal distribution for the 
observations in each group, a symmetric two-sided 90 % confidence interval is calculated as: 

( 1y  - 0y ) ± {[t(df;0.95)] s (n1
-1 + n0

-1)} 

Where: 

 y  refers to the natural logarithm of the original observations; 

 1y  is the average value of y in group 1 (the GMO); 

 0y  is the average value of y in group 0 (the chosen conventional counterpart); 

 1n  and 0n  are the number of observations in group 1 and 0, respectively; 

s  is the pooled within-group standard deviation of y ; it is calculated from the group standard 

deviations 1s and 0s  as 
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= , where dfj = nj - 1;  

dfj are the appropriate degrees of freedom for the jth group; (note that in designs with more groups 
other groups can also be used in this pooling) 

t(df;0.95) is the 95 % point of Student’s t distribution with df degrees of freedom. 

The calculated confidence interval can be plotted together with the value 0 (for difference testing) and 
the equivalence limits UL θθ , . Such a plot will immediately reveal whether the GMO is significantly 
different from the conventional counterpart (at the 90 % confidence level), and/or equivalence can be 
claimed or denied (at the 95 % confidence level). 

When it is considered useful to have results also in the form of p values from statistical significance 
tests, then these can be easily calculated, without loss of generality, as: 
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Where the latter test is appropriate when 01 yy ≥ , and where a similar test for the lower limits should 
be used otherwise. Note that a significance test of equivalence, (that is a test with a null hypothesis of 
equivalence rather than the usual null hypothesis of non-equivalence) would be available, if required, 
by simply reversing the inequality sign in the equation above. 

In cases where the assumption of lognormality is considered invalid other approaches are needed. If 
the measurements themselves have a normal distribution, then a two-sided confidence interval (or a 
one-sided limit) for the ratio of GMO to its conventional counterpart can be estimated solving a 
quadratic equation according to Fieller (1954). Related simultaneous intervals and limits for 
comparisons of several varieties relative to a control are available according to Dilba et al. (2004). 
Modified versions for the case of variance heterogeneity are available as well. 

If neither lognormality nor normality can be assumed for the endpoints, a non-parametric Hodges-
Lehmann-type confidence interval for the ratio of medians of continuous endpoints is available 
according to Hothorn and Munzel (2002). 

Three approaches for the ratio of means (assuming a lognormal distribution according to Chen and 
Zhou (2006), assuming a normal distribution, assuming any continuous distribution) are available in 
the R library pairwiseCI (http://cran.r-project.org/web/packages/pairwiseCI/) together with the 
modification for variance heterogeneity for the case of normal distribution according to Tamhane and 
Logan (2004). Simultaneous confidence intervals and limits can be estimated by means of the R 
library mratios (http://cran.r-project.org/web/packages/mratios/). 

Usually multiple endpoints are to be tested. If the assumptions hold, then the procedures of this section 
have the correct statistical properties for single endpoints. It is advised to apply the procedure to a 
series of endpoints, and plot the results for many endpoints together in one graph (or a few graphs). 
However, for the complete simultaneous assessment the overall confidence level will then be lower, 
i.e. the probability of a type I error (finding at least one difference where none exists) will be higher 
than the nominal value (10 %) in a proof of difference. See Section 3.2.4 for further discussion. 

3.2.3. Single endpoints in more complex experimental designs 

For more complex experimental designs and/or other assumptions regarding the statistical distribution 
it will often be possible to calculate similar confidence intervals as given in the previous section, 
though by the application of perhaps more advanced statistical methods. Common techniques are 
analysis of variance (ANOVA) with fixed and/or random effect models. The Residual Maximum 
Likelihood (REML) method is another well-known algorithm for fitting these models. In principle the 
formulae in the previous section that dealt with single endpoints in simple two-group designs might 
apply also to these more complex situations if s is replaced by the appropriate residual standard 
deviation and df by the appropriate degrees of freedom. It is recommended to pool estimates of 
residual variation over all treatments in the experiment. For example, when commercial varieties are 
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included in the design for the estimation of equivalence limits (see Section 3), the residual variation 
for these varieties can also be included in the estimate of residual variation to be used for the two tests 
of difference and equivalence. For unbalanced designs it is recommended to calculate degrees of 
freedom by the Kenward-Roger method (Kenward & Roger, 1997; Spilke et al. 2005; and see example 
in Section 5). 

Commonly in field trials, the GMO is compared with the appropriate conventional counterpart and 
other commercial varieties at different sites, and possibly over repeated years, using a completely 
randomized block design on the particular field. The number of plots, the experimental units to which 
treatments are randomized, has previously often been rather small at each site, typically between 3 and 
8 (see Sections 2.2 and 2.3 above). With such small sample sizes, the power of a fixed effect ANOVA 
model including interactions between the fixed factors variety, site, (possibly year) would be 
inappropriately small. Particularly, the power of a per-site (per-year) evaluation is commonly so small, 
that such an evaluation is not adequate for claiming equivalence. 

A mixed effect model can be used for the analysis of the complete data set (all sites and/or years) 
where the factors site and, if present, year are assumed to be either random or fixed, depending on the 
details of the experimental design. Here, and in the example in Section 5, we will assume random site 
and year effects. The power of the comparison between the GMO variety and its conventional 
counterpart (and the other commercial varieties) depends in a complex manner on the number of plots, 
the number of sites and the number of years. The between-site, between-replication, between-plot and 
possibly the between-year variability will be estimated as related variance components. The primary 
objective for an average difference/equivalence approach is neither the identification of possible 
interactions nor per-site (per-year) evaluation. Instead, overall (for all sites, plots, years) confidence 
limits are estimated, allowing an overall claim of equivalence. However, to aid the identification of 
unintended effects that might otherwise be missed in an overall analysis it is required that applicants 
should provide a table or graph, giving, for each (transformed) endpoint, the means and standard errors 
of means of the GM and conventional counterpart(s) for each site. 

More specific recommendations for analysis are given in Section 3.3.3. 

3.2.4. Multiple endpoints 

In an agronomic, phenotypic or compositional analysis or in an animal study there are usually many 
analysed endpoints, each representing a different biological and/or chemical characteristic. For a 
comparative risk assessment of GM plants and/or derived foods/feeds it is then necessary to integrate 
the statistical findings on all the endpoints of interest. As mentioned briefly in Sections 1.3 and 3.2.2, 
this can be done in an informal way, or more formal statistical approaches can be applied. The GMO 
Panel notes that such formal statistical approaches are still very much under development. Possible 
approaches can be based on an integration of statistical procedures for single endpoints (multiple 
comparison approach) or on the application of statistical methods for multivariate data (multivariate 
analysis approach). 

3.2.4.1. Possible approaches for multiple comparisons 

When it is required to establish equivalence for each individual endpoint, global claims of no 
differences at all, or of equivalence for all endpoints become very difficult. The probability of 
obtaining significant differences by chance alone may become large. The same is true for the 
probability that at least one of the endpoints cannot be shown to be equivalent. This increasing 
difficulty to provide answers by statistical means is a direct consequence of the implicitly increasing 
vagueness of the questions being asked when many endpoints are considered. Better definition of 
equivalence limits at the beginning of the process can help obviating the problem by limiting the 
number of significant deviations of endpoints which may be considered, in the end, biologically or 
toxicologically irrelevant. 
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Problems of multiplicity are ignored in many statistical reports on GMO comparative evaluation. For 
example in Oberdoerfer et al. (2005) numerous non-equivalences are found (and acknowledged), e.g. 
for calcium, iron, vitamin B1, pantothenic acid, and vitamin E; still the authors claim an overall 
compositional equivalence. Examples like this illustrate the need for a more scientific and objective 
approach. 

The overall approach favoured in this document for the display of the statistical analysis of a given 
data set is the simultaneous plotting of single endpoint confidence intervals for the comparison of a 
GMO and its conventional counterpart (see Section 4), together with lines representing the no 
difference situation and all the respective equivalence limits. 

A first approach to the interpretation of such a display might be an analysis of the number of 
significant results obtained in comparison with what is expected under certain assumptions. 
Obviously, when testing a large number (p) of endpoints each at level α, then, ignoring certain 
complications outlined below, α⋅p tests can be expected to give a significant result by chance alone. 
For example, with p = 500 and α = 0.10, fifty spurious significances are expected. And due to random 
variation this number is expected to be even larger in half of all cases. 

There are at least two reasons why finding more than α⋅p significant test results should not be 
unexpected under more realistic assumptions of GMO comparative assessment. First, endpoints 
typically are correlated. Allowing for correlation leaves the expected proportion of test results that are 
significant by chance unchanged (at 5 or 10 %), but shows that deviations from this expected 
proportion are more likely than under the assumption of completely uncorrelated variables. 
Effectively, the number of endpoints is less than the nominal number p. To assess whether the actually 
observed number of significant test results can be due to random variation alone it is worthwhile to 
estimate by simulation how likely it is to observe this many significant results under the assumption 
that GMO and conventional counterpart means are exactly the same, but with a correlation structure as 
estimated from the data. See EFSA (2007) for an example of this simulation approach. 

Secondly, there is a discrepancy between the assumption of strict equality of the GMO and 
conventional counterpart means that is used as a null hypothesis in the statistical test of difference, and 
the idea of the existence of natural variation between any pair of varieties. When it is generally 
accepted that there is natural variation between lines, then it is also reasonable to expect some 
variation between the GMO and the comparator varieties. Again, simulation can be used to estimate 
how likely it is to obtain the actually observed number of significant results under the assumption that 
GMO and conventional counterpart means might in fact be slightly different, given a distribution of 
acceptable differences. In these simulations the degree of acceptable difference should be specified, 
and that can for example be taken equal to the observed variation between the means of the 
commercial reference varieties. In general, this procedure then estimates the distribution of the number 
of significant differences that would be obtained with difference tests between two randomly chosen 
commercial varieties. This is considered a useful point of reference for judging the actually obtained 
number of significant differences between GMO and conventional counterpart. An example of this 
simulation approach to evaluate the number of observed significant differences can also be found in 
EFSA (2007), and in Section 4 of the current opinion. 

Formal approaches to multiple hypothesis testing usually consider the difference-testing case (see e.g. 
reviews in Shaffer, 1995 or Dudoit et al., 2003 the latter in the context of microarray experiments). 
Much less attention has been given to the equivalence-testing case (e.g. Berger, 1982; Bofinger and 
Bofinger, 1995; Berger and Hsu, 1996; Wang et al., 1999; Quan et al., 2001; Romano, 2005). In 
addition, most of this work is theoretical and not yet adaptable to cases where practical analysis is 
required. 

Given known limits and comparable equivalence tests, global equivalence can be claimed when each 
individual test decides on equivalence, each at level α. This multiple testing approach with individual 
level α tests is a consequence of the intersection-union (IU) test principle (see details Berger, 1982). 
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However, this global test is rather conservative and ignores the correlation between the endpoints. Up 
to now, no IU-test taking the correlation between endpoints into account is available. However, it is 
not likely that in a real study with many endpoints a claim on global equivalence is possible, at least 
with sensitive equivalence limits. 

It has been suggested recently in the literature on practical GMO risk assessment that p-value 
adjustment using the concept of the false discovery rate (FDR) would be useful to account for the 
numerous comparisons and to minimize the number of declared significances (Herman et al., 2007; 
McNaughton et al., 2007). The false discovery rate is the expected proportion of false positive tests 
among all rejected hypotheses. It was introduced by Benjamini & Hochberg (1995), and many 
modifications have been suggested, most notably by Storey (2002). It has gained popularity for 
assessing significance in genomic studies with thousands of features (see e.g. Storey and Tibshirani, 
2003; Dudoit et al., 2003; Pawitan et al., 2005). However, in such studies one is typically interested in 
the quality of the inference in the subset of variables which were found to be significantly different 
following a certain test procedure. This means that FDR as usually applied (i.e. in a context of 
difference testing) is a property of the subset of endpoints for which a significant difference has been 
found. It does not address the endpoints for which no significance has been found and therefore FDR 
applied to difference testing does not seem sufficient as a measure in GMO risk assessment. It could 
be of interest to adapt the FDR concept for equivalence testing, i.e. for a situation where hypotheses 
are reversed, but the GMO Panel is not aware that this has yet been done. 

3.2.4.2. Possible approaches for multivariate analysis 

Formulating hypotheses in multivariate space is standard for difference testing. However, there is little 
experience with multivariate tests of equivalence (see e.g. Brown et al 1995, Munk and Pflüger 1999, 
Enot and Draper 2007). In future work such approaches could be further investigated along the 
following lines: 

1. Modelling of biological variation - The ordinary biological variation between reference varieties 
may be captured by studying the multivariate dataset of variety mean values with e.g. principal 
component analysis (PCA). Statistical models considering an appropriate low-dimensional 
subspace where most biological variation occurs may be defined. The importance of within-
variety biological variation could be investigated and possible ways to model it. 

2. Modelling of equivalence - Boundaries of biologically/toxicologically relevant differences can be 
defined for example as p% confidence or tolerance bounds in the multivariate space. The 
acceptable region in the simplest case will be an ellipsoid. 

3. Equivalence testing - Multivariate equivalence tests can be performed for the GMO variety by 
using the within-variety variation in a test with null hypothesis that the GMO is on the boundary 
of the acceptable region and the alternative hypothesis that it is inside the acceptable region. As in 
the univariate case the tests may be implemented using (multivariate) confidence sets. 

3.3. Estimation of equivalence limits 

3.3.1. Which data can be used? 

Often the information on the natural variation of levels of relevant crop constituents is rather limited 
(Kuiper et al., 2002). There are several ways in which data on natural variation may be available. 

1. In addition to the GMO and its conventional counterpart, the trials performed include several 
commercial crop varieties, which must represent non-GM varieties with a proven history of safe 
use, and these should be fully randomised as integral parts of the experiment.  
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2. Data on such commercial crop varieties may be available from other experiments, databases or in 
the literature. 

In the opinion of the GMO Panel, the first of these is mandatory in principle, whereas the other 
options may be alternatives only for those rare cases that might be met in the future, where strong 
justification can be given why the first option was impossible. The first type of information is 
required, because the comparison between genotypes is made under strict experimental procedure 
designed to eliminate confounding effects (see Section 2). As additional evidence for the risk 
characterization phase, in which the statistical results of field trials are put into the context of 
biological or toxicological relevance, the possibility to use other experiments or historical data to 
provide alternative estimates of equivalence limits should also be considered. This possibility and 
checks on data quality are further discussed in Section 3.3.3. 

3.3.2. Use of concurrent data to estimate equivalence limits, and the testing of difference and 
equivalence 

When commercial varieties are included in the same experiment where the GMO is tested against the 
conventional counterpart(s) then data on commercial varieties are obtained in identical conditions to 
that of the GM and its conventional counterpart. This has the major advantage of eliminating 
uncontrollable confounding effects. The additional number of plots required is minimal because the 
commercial varieties can be grown on some of the plots that would otherwise have to be allocated to 
either the GM or its conventional counterpart (see Section 2). 

The total variability of each endpoint observed in the field trials can then be estimated and partitioned 
using appropriate statistical models in order to derive two sets of confidence limits and to set a lower 
and upper equivalence limit based on the variability observed among the commercial varieties. One set 
of confidence limits is used in the test of difference; the other set and the equivalence limits are used in 
the test of equivalence. The recommendation is that the both tests, with null hypotheses of difference 
and of non-equivalence, respectively, are always performed. 

It is sensible to derive equivalence limits by considering how the commercial varieties compare to the 
GMO. Established equivalence of the GMO and commercial varieties has often been interpreted as 
relevant for subsequent toxicological risk assessments. If on the other hand the GMO differs from the 
commercial varieties then this may be a reason for concern, and the result should be placed in context 
and interpreted within a risk assessment framework. It is recommended to apply a linear mixed 
statistical model, fitted to (possibly transformed) data, in order to derive an estimate of variation 
between commercial genotypes. One model (denoted model 1) should be used for calculation of the 
confidence limits for both tests (difference and equivalence); a slightly different model (model 2) 
should be used to estimate the equivalence limits to be used in the equivalence test. 

Denote by I an indicator variable (uncentered in the mixed model) such that I=1 for a field plot having 
any of the commercial varieties, and I=0 otherwise. Then the random factors for model 1 should 
include, but not necessarily be restricted to, those representing the variation: (i) between the test 
materials (a set that includes the GM crop, its conventional counterpart, each of the commercial 
varieties and any additional comparators); (ii) in the interaction between the test materials and I; (iii) 
between sites; and (iv) between blocks within sites. Model 2 should be identical to model 1 except that 
the random factor representing the interaction between the test materials and I is omitted. 

The fixed factor for both models should have as many levels as there are test materials and represent 
the contrasts between the means of the test materials. Here, the set of commercial varieties should be 
considered as a single level of the fixed factor. For the difference and equivalence tests, the component 
of the fixed factor of interest is the single degree-of-freedom contrast between, respectively, the GM 
crop and its conventional counterpart, and the GM crop and the set of commercial varieties. 

Both the difference test and the equivalence test are implemented using the well-known 
correspondence between hypothesis testing and the construction of confidence limits. In the case of 
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equivalence testing the approach used should follow the two one-sided tests (TOST) methodology 
(e.g. Schuirmann, 1987) by rejecting the null hypothesis of non-equivalence when the both confidence 
limits fall between the equivalence limits. The choice of 90% confidence limits corresponds to the 
customary 95% level for statistical testing of equivalence. 

For each endpoint, calculation of the confidence limits, estimation of equivalence limits and associated 
statistical tests should be performed as described below, using the following notation. Sample means 
are denoted by m, with subscripts G, C and R for the GM crop, its conventional counterpart and the set 
of commercial (reference) varieties, respectively. The variability encompassed in the standard error of 
the difference between the means of any two test materials, X and Y, calculated using model i (i = 
1,2), is denoted sed(XY;i).  The 100a% point of Student's t distribution is denoted as t(df;i;a), where i 
denotes the model used and df is the appropriate number of degrees of freedom which is recommended 
to be calculated by the Kenward-Roger method. The least significant difference between the means of 
any two test materials, X and Y, using model i, should be calculated as the product of t(df;i;a) and 
sed(XY;i), and is denoted lsd(XY;i;a). 

For the difference test, the two-sided 90% confidence limits should be calculated about mG, as 
mG ± lsd(GC;1;95); the null hypothesis of equality between mG and mC should be rejected and the test 
deemed statistically significant if mC falls outside these limits. For the equivalence test, the two-sided 
95% equivalence limits should be estimated as mR ± lsd(GR;2;97.5) and two-sided 90% confidence 
limits should be calculated about mG, as mG ± lsd(GR;1;95); the null hypothesis of non-equivalence 
should be rejected and the test deemed statistically significant if and only if the confidence limits lie 
entirely inside the equivalence limits. 

For reporting purposes, it is recommended that full details be given for each endpoint analysed, listing: 
(a) the assumptions underlying the analysis, (b) full specification of the mixed models chosen, 
including fixed and random effects, (c) results of any test of interaction between the test materials and 
sites, (d) fixed effects, together with the appropriate estimated residual variation with which it is 
compared, and variance components for the random factors, (e) estimated degrees of freedom, (f) any 
other relevant statistics. The likely impact of other growing conditions not tested in the trial should 
also be discussed. 

The recommended graphical approach to the display of the results of this analysis is outlined in 
Section 4.1, which describes a convenient method to assess simultaneously the results of both the 
difference and equivalence test. An example of the mixed model analysis is given in Section 5. This 
approach assumes that the available commercial varieties represent the population of varieties with a 
history of safe use with regard to the endpoints of interest. Usually there will be no formal mechanism 
of variety selection, and therefore it will be up to the scientist performing the study to justify this 
assumption. Obviously, there will be more confidence in the procedure when the number of 
commercial varieties is large. With less than six commercial varieties alternative methods should be 
considered, for example, methods assuming the same variability within groups of endpoints. This 
again requires a series of a priori decisions to be made by the scientists responsible. Limits calculated 
in this or any other manner from available data should be scrutinized to check that they represent 
acceptable equivalence limits. A purely statistical approach can make little progress towards reviewing 
acceptability, which should always have a proper biological/toxicological basis. 

It is a consequence of the simplified graphical display that confidence limits for the difference test 
were chosen as 90%, yielding a 10% size for the difference test, in which 1 in 10 of such tests is 
expected to yield a significant result by chance alone. Despite the expected proportion of spurious 
significant differences, it is recommended that the responsible scientist should catalogue, report and 
discuss all significant differences observed between the GM crop, its conventional counterpart and, 
where applicable, any other test material, focusing on their biological relevance through risk 
characterisation. 
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3.3.3. Use of literature or databases to set equivalence limits 

There may be rare cases where it is impossible to assess the natural variation from data on commercial 
varieties in the same experiment, either because such an experiment would be impossible or 
unreasonable to perform, or because such varieties have for unforeseen reasons not yielded 
satisfactory data from the experiment. If very strong and explicit justification can be given for not 
performing an experiment with commercial varieties then the use of external data on natural variation 
might be considered. 

In order of preference such external data may be: 

1. Data on such commercial crop varieties may be available from other experiments. 

2. Historical data on parameter values connected to safe use of the crop may be available in 
databases collected by organisations with a statutory or academic regulatory or risk assessment 
function, such as ILSI. 

3. Historical data on parameter values connected to safe use of the crop may be available in the 
public literature or in research reports, and in particularly from meta-analyses comprising several 
such sources. 

With such external data it is extremely important to check the following points: 

1. Is the measured variable the same (commensurability)? 

2. Are the data representative of the environmental and genotypic variation (over space, time, 
varieties, etc.)? 

3. Are the experimental or sampling conditions, under which the data were obtained, sufficiently 
known in order to estimate the natural variation relevant for the GMO to control comparison in the 
current experiment? 

Exactly how such external data can be used to set equivalence limits must be evaluated on a case-by-
case basis, and should for example include accounting for inter-study variability, weighting of 
different estimates according to sample sizes, discounting of data based on data quality considerations, 
etc. 

In general it may be expected that natural variation estimated from external data will not only describe 
genotypic variation, but also environmental variation. Therefore limits obtained from literature data 
can be expected to be wider than limits obtained from concurrent data. Allowance must be made for 
this. 

In the rare cases where external data are used to set such fixed equivalence limits, the procedure for 
analysis is as outlined in Section 3.2.2. 

3.3.4. Comparative assessment when there are no known equivalence limits  

When equivalence limits are not known and no data to estimate such limits are available, then a 
comparative safety evaluation may have to be based on subjective evaluations of equivalence limits. 

Statistical methods can help in presenting the available information optimally. Confidence intervals 
for the difference between the GMO and its conventional counterpart can be plotted in the same way 
as described below in Section 4.1. Using plots showing confidence intervals for all endpoints 
simultaneously the risk assessor may be able to define ad hoc limits, considering the observed pattern 
and available biological knowledge. However, such limits need independent confirmation. In 
particular it should be stressed that their use for a statistical equivalence assessment is only valid for 
future experiments. They cannot be used for any statistical interpretation in the assessment in which 
they have been estimated. 
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To summarize, if there is no possibility to set or estimate equivalence limits then the ability of 
statistical methodology to contribute to risk assessment is very limited, other than offering ways to 
summarize and describe data. 

4. Interpretation of analysis 

4.1. Types of possible outcomes of the comparison between the test materials 

The recommended method of considering the results of the two tests outlined in Section 3.3.2 above, 
is to display as many of the analysed endpoints as is feasible, simultaneously, on the same graph. More 
than one graph is required if endpoints are analysed on different scales, and/or if some are transformed 
and others not. After the appropriate transformation, simultaneous display is facilitated by shifting all 
relevant values for each particular endpoint to a scale that has mC, the mean of the conventional 
counterpart for that endpoint, as its baseline zero value. Therefore, on this new scale, the values of the 
means of the GM crop, its conventional counterpart and the set of commercial varieties become, 
respectively:  mG - mC, 0, mR - mC. Note that a difference of 0 on an additive scale corresponds to a 
ratio of 1 on a multiplicative scale. Hence, in principle, for a multiplicative scale, both the mean of the 
GM crop and the equivalence limits can be displayed as ratios to the conventional counterpart (but see 
below for certain adjustments required to achieve a valid practical outcome). 

After shifting all relevant values to the new zero baseline, the confidence limits for the difference test 
on this new scale become: mG - mC ± lsd(GC;1;95), the equivalence limits   mR - mC ± lsd(GR;2;97.5), 
and the confidence limits for the equivalence test mG - mC ± lsd(GR;1;95). Note that the equivalence 
limits, chosen to be symmetrical around the centre of the distribution of commercial varieties, are 
typically asymmetrical (before and after adjustment) on this new scale. 

To facilitate visual interpretation, instead of using the two sets of confidence limits in the graphs, it is 
recommended for convenience that only one be displayed, that for the difference test. Without some 
adjustment, the confidence limits for the difference test would not give a valid visual representation 
for the equivalence test on the graph. This problem is overcome by making an adjustment to the 
displayed equivalence limits. After this adjustment the displayed confidence limits for the difference 
test may be used as a basis also for the visual representation of the equivalence test. In this way, one 
confidence limit may serve visually for assessing the outcome of both tests simultaneously. The 
adjustment of the equivalence limits consists of two steps: (1) scaling the basic equivalence limits, so 
that the confidence limits required for the difference and equivalence tests have the same width; and 
(2) an appropriate shift to facilitate display of the adjusted limits, together with mG, on the scale that 
has mC as its baseline zero value. The adjusted equivalence limits for visual display should be 
calculated by the formula: 

(mG - mC)   +   {[(mR - mG) ±  lsd(GR;2;97.5)] lsd(GC;1;95) / lsd(GR;1;95)} 
 

It is recommended that the graph should show the line of zero difference between the GM and its 
conventional counterpart and, for each endpoint: the lower and upper adjusted equivalence limits, the 
mean difference between the GM and its conventional counterpart, and the confidence limits for this 
difference (see the set of possible example outcomes for a single endpoint in Figure 1, below). When, 
in addition to the conventional counterpart, another test material is used as comparator, the mean 
difference between the GM and that comparator, its confidence limits and its adjusted equivalence 
limits should be displayed on the same graph referred to above, for all such additional comparators, by 
referring this to the same zero baseline as defined by the conventional counterpart. The horizontal axis 
should be labelled with values that specify the change on the natural scale. In the case of a 
multiplicative scale and/or a logarithmic transformation, changes of 2x and ½x will appear equally 
spaced on either side of the line of zero difference. It is assumed here that the line of no difference is in 
between the equivalence limits. If that is not the case then the conventional counterpart is itself non-
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equivalent to the commercial varieties, and a separate, non-statistical discussion should consider the 
place and relative importance of difference and equivalence testing in the risk assessment. 

Regarding proof of difference, each outcome from the graph should be categorised as follows and the 
respective appropriate conclusion should be drawn: 

• Outcome types 1, 3 and 5: the confidence interval bar overlaps with the line of no-difference. The 
null hypothesis of no difference cannot be rejected and the appropriate conclusion is that there is 
insufficient evidence that the GM crop and its conventional counterpart differ. 

• Outcome types 2, 4, 6 and 7: the confidence interval bar does not overlap with the line of no-
difference. The null hypothesis of no difference must be rejected and the appropriate conclusion is 
that the GM crop is different from its conventional counterpart.

 
Figure 1. Simplified version of a graph for comparative assessment showing the 7 outcome types possible for a single 
endpoint. After adjustment of the equivalence limits, a single confidence limit (for the difference) serves visually for 
assessing the outcome of both tests (difference and equivalence). Here, only the upper adjusted equivalence limit is 
considered. Shown are: the mean of the GM crop on an appropriate scale (square), the confidence limits (whiskers) for the 
difference between the GM crop and its conventional couterpart (bar shows confidence interval), a vertical line indicating 
zero difference (for proof of difference), and vertical lines indicating adjusted equivalence limits (for proof of equivalence).  
For outcome types 1, 3 and 5 the null hypothesis of no difference cannot be rejected: for outcomes 2, 4, 6 and 7 the GM crop 
is different from its conventional counterpart. Regarding interpretation of equivalence, four categories (i) - (iv) are identified: 
in category (i) the null hypothesis of non-equivalence is rejected in favour of equivalence; in categories (ii), (iii) and (iv) 
non-equivalence cannot be rejected. See text for what appropriate conclusions may be drawn. 
 
 

Regarding proof of equivalence, each outcome from the graph should be categorised as follows, and 
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• Outcome types 1 and 2 (category (i), Figure 1): both confidence limits lie between the 
adjusted equivalence limits and the null hypothesis of non-equivalence is rejected. The 
appropriate conclusion is that the GM is equivalent to the set of commercial varieties. 

• Outcome types 3 and 4 (category (ii), Figure 1): the mean of the GM crop lies between the 
adjusted equivalence limits, but the confidence interval bar overlaps at least one of the 
adjusted equivalence limits on the graph. Non-equivalence cannot be rejected, but the 
appropriate conclusion is that equivalence between the GM and the set of commercial varieties 
is more likely than not. Further evaluation may be required. 

• Outcome types 5 and 6 (category (iii), Figure 1): the mean of the GM crop lies outside the 
adjusted equivalence limits, but the confidence interval bar overlaps with at least one of the 
adjusted equivalence limits. Non-equivalence cannot be rejected and the appropriate 
conclusion is that equivalence between the GM and the set of commercial varieties is less 
likely than not. Further evaluation is required. 

• Outcome type 7 (category (iv), Figure 1): both confidence limits lie outside the adjusted 
equivalence limits. The appropriate conclusion is that the evidence analysed here demonstrates 
non-equivalence between the GM and the set of commercial varieties. Further evaluation is 
required.  

Note that formally in statistics the null hypothesis is never 'accepted' and that instead the formal 
conclusion for outcomes 3-7 is that the null hypothesis 'cannot be rejected'. However, regarding 
outcome 7, for all practical purposes the reasonable conclusion of non-equivalence should prevail for 
subsequent risk characterization. The direct interpretation of the outcome types 3-6 with respect to 
GMO risk assessment may be more difficult and may need further safety evaluation, possibly using 
alternative statistical methods. For example, if differences, even if not statistically significant, were 
consistent over multiple situations, this could indicate the occurrence of unintended effects. Outcome 
types 1 or 2 may easily be obtained for characteristics that are stable and precisely measured within 
each genotype, but that have a large natural variation among commercial genotypes. Outcome types 3 
or 5 may easily result when the measurement precision or within-genotype stability is low in 
comparison to the natural variation. 

Following the above interpretation, risk characterization should be used by applicants to specify what 
further evaluation is needed, based on considerations linked to patterns of observed results and on 
biological/toxicological relevance. 

When there is more than one test-material for comparison (i.e. combination of genetic line and 
treatment), as for example when herbicide tolerant systems are assessed, the mean difference and its 
confidence interval for all test-materials should be displayed on one graph, referring all of these, as 
described above, to the same zero line defined by the conventional counterpart. 

4.2. Average and site-specific comparisons 

Field experiments are to be replicated at multiple sites (see Section 2) and, as specified, at each site a 
field trial should be conducted with the varieties randomised over plots in multiple blocks (or 
replications). The statistical analysis of data from the experiments for comparative risk assessment is 
mainly concerned with studying the average difference and the average equivalence over sites. 

Nevertheless, applicants should check for possible site-specific effects, i.e. genotype by site 
interactions. If genotype x site interactions are identified, then it is important that each individual site 
trial is sufficiently well-replicated to allow a credible site-specific analysis at each of the sites. In 
particular, it is recommended that where a difference or lack of equivalence is found for an endpoint, 
further analysis should be done to assess whether there are interactions between any of the test 
materials and site. However, it is not absolutely necessary that this further analysis uses the relatively 



Statistical considerations for GMOs safety
 

 
29 EFSA Journal 2010; 8(1):1250 

complex statistical mixed model approach outlined above; a simple, standard ANOVA approach may 
be all that is required. Applicants should in any case provide a table or graph (see Section 3.2.3), 
giving, for each (transformed) endpoint, the means and standard errors of means of the GM and 
comparator(s) for each site; this may be used to aid the identification and discussion of interactions. 

4.3. More complex situations 

Data may be available on endpoints having continuous values (e.g. plant composition or animal blood 
parameters), discrete values (e.g. counts), or ordinal values (e.g. histological observations). It may or 
may not be the case that a simple statistical distribution can be assumed to govern the variation of the 
endpoints. There may or may not be a serious possibility of outliers in the data. In this guidance, 
which is of a fundamental nature, the focus is on easily understood cases, especially the case of 
continuous endpoints for which a lognormal distribution can be assumed, without much risk of 
outliers. The statistical approaches presented in this document should be adapted in more complex 
situations. 

4.4. Simultaneous assessment of multiple endpoints 

As stated previously, this opinion only provides a limited introduction to the possible application of 
statistical methods for comparative risk assessment on multiple endpoints. Substantial more work on 
this subject is needed. Therefore this section of the opinion is intended only to present material to 
provoke further discussion and future research. 

In risk assessment studies many endpoints are measured and in current statistical methodology they 
are often addressed independently, even though they may be known to be correlated. In a global 
assessment the relevant issues become more complex because the data from all endpoints have to be 
considered simultaneously. Just as for single endpoints, the evaluation of multiple endpoints should be 
specifically adapted for either the proof of difference or the proof of equivalence.  

Basically, for both proof of difference and proof of equivalence approaches there are two ways in 
which a global assessment can be approached using statistical methods: 

1. Multiple comparisons. Here the basic statistical approaches are univariate calculations (e.g. tests, 
confidence intervals) for single endpoints. Additionally, there are procedures that, on the basis of 
the results from the univariate statistics (e.g. p values, confidence intervals), allow reaching global 
conclusions (e.g. by constructing simultaneous confidence intervals, see Section 3.2.4). 

2. Multivariate analysis. This relies on the use of statistical approaches and/or models for 
multivariate data, including the possibilities to estimate correlations between variables and to 
consider subspaces of reduced dimension (see Section 3.2.4). 

Complementary to either of these, it is always useful to consider a third possibility: 

3. Restrict the number of endpoints a priori in order to ameliorate the problems of high dimension 
and multiplicity.  

In a multiple comparison framework statistical results obtained for single endpoints are combined. The 
interpretation of the combined results may proceed in various degrees of formality. An informal 
procedure is to graph the confidence intervals representing the comparison of the GMO vs. its 
conventional counterpart together (as it is proposed in Section 1.3). By visual inspection of the graph 
it is then decided whether there are potential hazards and/or whether the GMO and its control should 
be termed equivalent. 

In a somewhat more formal analysis it can be investigated, e.g. by simulation studies, how many 
significant results can be expected under the null hypothesis of GMO and conventional counterpart 
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being equivalent varieties (that is, allowing for the same variation as found between commercial 
varieties). Such considerations can account for specific information that is available, e.g. observed 
correlations between endpoints, and/or observed variability between commercial varieties which have 
a history of safe use. Such an approach was used in a recent EFSA review of the MON 863 maize 90-
day rat feeding study (EFSA 2007, Appendix 5), and is also partly illustrated in the example of this 
opinion (Section 4). Of course, a statement that the number of significant differences is or is not higher 
than expected should still be accompanied by an expert evaluation of the biological and/or 
toxicological relevance of the observed pattern of statistically significant results. 

More formal approaches to multiple hypothesis testing can be found in the statistical literature (see 
Shaffer, 1995; or Dudoit et al., 2003 for a review). The basic idea is that the Type I and Type II error 
rates discussed in Section 1.2 are redefined in terms of a set (family) of hypotheses. The family-wise 
error rate (FWER) is the probability of at least one error in the family of hypotheses.  

The objective in the proof of difference is to identify which of the endpoints are different, i.e. changed 
with respect to the conventional counterpart. The question arises whether in the proof of difference an 
adjustment against multiplicity (i.e. many endpoints) is appropriate and, if so, which concept of error 
control is preferred. On the one hand an adjustment reduces the power, i.e. the false negative rate 
increases. This conservatism induces considerable loss of power in trials where there are many 
endpoints and/or small sample sizes. On the other hand, without multiplicity adjustment the false 
positive rate increases as the number of endpoints increases. Whether the control of the family-wise 
error rate (FWER) or of the false discovery rate (FDR) is more appropriate is a topic of recent research 
(e.g. Dudoit et al. 2003). In any case only those procedures taking the correlations between the 
endpoints into account, i.e. that restrict the degree of conservatism, can be recommended. 

The objective in the proof of equivalence is to characterize equivalence for all endpoints or at least a 
subset of endpoints. In contrast to the proof of difference, there is an intersection-union test problem. 
Although the inference is performed on the marginal (1-α) confidence level for each individual 
endpoint, the global (or subset) decision becomes conservative with increasing number of endpoints. 

More research is needed for appropriate simultaneous confidence intervals for multiple endpoints, 
both in the case of a proof of difference and in the case of a proof of equivalence. In particular, the 
effects of small sample sizes and the required balance between false positive and false negative error 
rates must be taken into account. 

In a multivariate analysis framework all relevant concepts have to be reformulated in a multivariate 
context. For example, confidence intervals become confidence regions in multivariate space, and 
equivalence limits (points on a line) should be replaced by contours of concern in multivariate space. 
Although this may seem daunting, it may well be possible to apply standard statistical models based 
on multivariate normality leading to both confidence regions and contours-of-concern of ellipsoidal 
shape. In multivariate statistics there are many methods to investigate which subspaces are most 
relevant to describe natural variation, the most well-known of these methods being principal 
component analysis (PCA). 

As a result of the above mentioned methodological difficulties, we recommend for current use: the 
independent univariate evaluation of single endpoints, a joint graphical presentation, and the reporting 
and discussion of the frequency of significant results in the set of investigated endpoints. 

5. Example  

5.1. Data, experimental design, coding and analysis protocol 

This section provides an example of a statistical analysis as part of a comparative assessment 
regarding GMO safety. The data are a subset of a real dataset obtained from industry concerning a 
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field study. Here we restrict consideration to the compositional characteristics of maize grain for a GM 
variety, a comparator variety (the conventional counterpart) and 13 commercial varieties. 

The experiment was a randomised block design conducted at four sites in one year. The design 
protocol called for each site to be planted with the GM variety, the conventional counterpart and four 
commercial varieties in three replications, but there were some deviations caused by practical 
considerations. The GM variety was investigated with 3 replications at each site. The conventional 
counterpart had 3 replications at two of the sites, and 2 replications at the other two sites. Three 
commercial varieties were investigated at two sites and the remaining 10 commercial varieties at one 
site only, mostly with 3 replications per site (in some cases only 2 or even 1). The data analysed here 
concern 14-18 fields per site, for a total of 67 fields. 

It may be noted that this experimental design does not conform to the proposed guidelines as set out in 
this opinion. For example, the number of sites and the replication per site were lower than asked for in 
this opinion, the conventional counterpart was not included in all blocks, and with a total of 15 
varieties a complete block design should have been used. However, in spite of these shortcomings of 
the experimental design, the data were suitable to illustrate the statistical analysis. 

The maize grain was analysed for 68 endpoints, all compositional characteristics. However, for 15 
analytes (13 fatty acids, furfural and sodium) all results (or, in one case, all but one) were below a 
given limit of reporting. As there was no variation in these results which could be used for a 
comparative evaluation, they were omitted from the further statistical analysis. 

Seven results in the remaining set of 53 analytes were reported as less than a certain limit (non-
detects): six results for 16:1 palmitoleic acid and one result for phytic acid. The problem seemed 
minor, and, whereas more advanced statistical methods exist to incorporate such results in modelling, 
here the non-detects were simply set to half the reporting limit. 

Outliers were identified by visual inspection of graphs showing the log-transformed results for each of 
the three groups (GMO, conventional counterpart, reference). Outliers were identified for four 
analytes as shown in Figure 2, and also the seven non-detects set to half the limit of reporting were 
outlying. Purely for ease of illustration, these outliers were omitted from the further statistical analysis. 

The purpose of the statistical analysis was to: 

1. Calculate confidence limits for the difference between the mean of the GM and the mean of 
the conventional counterpart: dGC = mG – mC, as outlined in Section 3.3.2, using model 1; 

2. Calculate confidence limits for the difference between the mean of the GM and the mean of 
the reference varieties dGR = mG – mR, as outlined in Section 3.3.2, using model 1; 

3. Calculate equivalence limits as outlined in Section 3.3.2 using model 2; 

4. Prepare graphs for tests of difference and equivalence, first making the necessary adjustments 
to the equivalence limits, as outlined in Section 4.1. 

The logarithmically-transformed data were analysed with the following mixed model (the following 
information applies both to model 1 and to model 2): 

ijkllkijiijkl gtremy ε+++++=  

Where the notation used is as follows: i, j, k and l are indices for environment (site), replication within 
site, treatment group (conventional counterpart, GMO or reference) and (commercial) reference 
genotype, respectively. The response yijkl is the logarithmically-transformed result, using the natural 
logarithm (ln). The fixed factors in this model are m, the overall mean, and tk, the average deviation 
from the overall mean for each of the three treatment groups (k = 1: conventional counterpart, 2: 
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GMO, 3: reference genotypes). The random factors in the model are ei, the average deviation for 
environment i, rij, the average deviation for replicate j of environment i, gl, the average deviation for 
reference genotype l, and εijkl, the residual term for each measurement. As usual in mixed modelling, 
the random terms are assumed to arise independently from normal distributions with mean 0 and a 
certain variance component that is to be estimated (Ve, Vr,Vg and Vε, respectively). A common way to 
fit mixed models to data is the residual maximum likelihood (REML) algorithm, which is available in 
all major statistical packages. 

No genotype-environment interaction term was included in the model. Whereas it would usually be of 
interest to study such interaction, in the current dataset there was insufficient replication of 
commercial varieties at different sites (environments). 

Estimated means, mC , mG and mR , the differences of means, dGC = mG – mC and dGR = mG – mR,  and 
the standard errors of differences, sed(GC;i) and sed(GC;i) for model i (as defined in  Section 3.3.2), 
are easily available for the fixed effects in mixed models from standard software. 

These were used to construct, for the difference test, the two-sided 90% confidence limits 
mG ± lsd(GC;1;95); and, for the equivalence test, the two-sided 95% equivalence limits 
mR ± lsd(GR;2;97.5) and the two-sided 90% confidence limits mG ± lsd(GR;1;95) as given in Section 
3.3.2. Recall from that section that for the calculation of df, where df denotes the appropriate number 
of degrees of freedom, the method of Kenward and Roger (1997) was recommended (Spilke et al. 
2005). Also, that the least significant difference between the means of any two test materials, X and Y, 
using model i, calculated as the product of t(df;i;a) and sed(XY;i), was denoted lsd(XY;i;a), and this 
too is available from many statistical packages. 

The differences of means on the logarithmic scale can be back-transformed to ratios of geometric 
means on the original scale. so the point estimate of the ratio is 10d or ed depending on the type of 
logarithm used, and the approximate 100(1-α)% confidence interval is: 

[ ]lsddlsdd +− 10,10  or [ ]lsddlsdd ee +− ,  

Two different implementations of this general mixed model were needed for testing differences and 
equivalences. The practical implementation of the mixed model for calculating confidence limits of 
differences (i.e. model 1) in some major software packages is as follows: 

 

 Genstat: 

 FACTOR [labels=!T(compGMO,ref)] ref_aside 

CALC ref_aside = 1*(genotypegroup.in.!(1,2))+2*(genotypegroup==3) 

VCOMPONENTS [fixed=ref_aside/genotypegroup; cadjust=none]\ 

     random = site + site.rep + genotype.indref; constraint=pos 

REML y 

  

 SAS: 

 proc mixed data=example CL=WALD; 

  class site rep genotype genotypegroup; 
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   model y =  genotypegroup /s covb outp=out  ddfm=kenwardroger; 

   random site site*rep indref*genotype; 

   estimate 'gmo_comp' genotypegroup -1 1 0 / CL alpha=0.1; 

run; 

 

The practical implementation of the mixed model for estimating equivalence limits (i.e. model 2) in 
some major software packages is as follows: 

 

 Genstat: 

 FACTOR [labels=!T(comp,GMOref)] comp_aside 

CALC comp_aside = 1*(genotypegroup==1)+2*(genotypegroup.in.!(2,3)) 

VCOMPONENTS [fixed=comp_aside/genotypegroup; cadjust=none]\ 

     random = site + site.rep + genotype; constraint=pos 

REML y 

 

 SAS: 

 proc mixed data=example CL=WALD; 

  class site rep genotype genotypegroup; 

   model y =  genotypegroup /s covb outp=out  ddfm=kenwardroger; 

   random site site*rep genotype; 

   estimate 'gmo_ref' genotypegroup 0 1 -1 / CL alpha=0.05; 

run; 

 

For equivalence testing (again using model 1) the relevant code is: 

 

 Genstat: 

 FACTOR [labels=!T(comp,GMOref)] comp_aside 

CALC comp_aside = 1*(genotypegroup==1)+2*(genotypegroup.in.!(2,3)) 

VCOMPONENTS [fixed=comp_aside/genotypegroup; cadjust=none] 

 random = site + site.rep + indref.genotype; constraint=pos 
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REML y 
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SAS: 

 proc mixed data=example CL=WALD; 

  class site rep genotype genotypegroup; 

   model y =  genotypegroup /s covb outp=out  ddfm=kenwardroger; 

   random site site*rep indref*genotype; 

   estimate 'gmo_ref' genotypegroup 0 1 -1 / CL alpha=0.1; 

run; 

 

These program fragments give only the essential central mixed model calculation. Obviously more 
programming is needed to read in the data, outlier control, data transformation, and post-processing 
the results to calculate confidence intervals, equivalence limits and plot the graphs. 

Here, a remark may be helpful. Recall that model 2 is identical to model 1 except that the random 
factor representing the interaction between the group of commercial varieties and the indicator 
variable, I, is omitted. The basic information needed from the mixed model are the means, the standard 
errors of difference and the corresponding degrees of freedom. With the above two specifications of 
code for the mixed model (code for model 1 with genotype.indref and for model 2 with genotype 
among the random terms) the means and variance components are exactly the same. Only the seds and 
the dfs are different. Actually, the seds from the two models are related by: 

( ) ( )
( ) ( ) gGRGR

gGCGC

Vsedsed

Vsedsed

+=

⋅+=
2

1;
2

2;

2
1;

2
2; 2

  

Where Vg is the variance component for the genotypes. However, it is emphasised that it remains 
essential to fit the two models to the same dataset because of the separate calculations of the degrees 
of freedom by the Kenward-Roger method for the two cases. 

5.2. Results 

A graphical overview of the results of the comparative analysis is shown in Figures 3 and 4. More 
detailed results are given in Figures 5-7, and in Tables 1–8. 

Figures 3 and 4 show the relative differences of the GMO with respect to its conventional counterpart. 
For example, relative large deviations are seen for Acid Detergent Fiber (+10%), Ferulic Acid (-13%), 
Folic Acid (+14%), Neutral Detergent Fiber (+14%), Niacin (-13%) and Total Dietary Fiber (+12%). 
However, due to different variabilities, large differences need not be statistically significant (e.g. the 
interval for Acid Detergent Fiber includes 1, so the difference is not significant), and on the other hand 
smaller differences may be (e.g. Glycin is significantly higher in the GMO than in the conventional 
counterpart, with a point estimate of only +3.5%). Note that the significance tests are based on a 
standard error of differences (see Table 3) which is calculated from the residual variance as seddiff 

(see Table 2) in the programme code, where ( )10
1

12
1

0 += Vseddif , where 12 and 10 are the number 
of replications in this experiment for GMO and conventional counterpart, respectively. The number of 
degrees of freedom estimated by the Kenward-Roger method varies between 38.7 (16:1 Palmitoleic) 
and 54.6 (Ash). 
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In total twenty-three analytes were found to have a significant difference between GMO and its 
conventional counterpart (which is 43% of the 53 investigated analytes). These analytes are shown in 
blue (or in black or red if there was also a potential equivalence problem) in Figures 3 and 4, and 
boxplot representations of these data are shown in Figures 5-7 to assist further interpretation. Note, 
however, that these boxplot representations ignore some aspects of the model, such as site and 
replication variation, and furthermore display data on the natural, untransformed scale. 

Regarding the estimated equivalence limits, although conceptually there is a single pair of limits 
(calculated using the methods in Section 3.3.2), here three methods of display of these are presented in 
order to aid interpretation. Thus, the limits are calculated on three different scales; each scale is useful 
for a specific purpose. 

i. The first scale is the natural, raw, untransformed scale, which allows easy recognition and 
facilitates initial data exploration by biologists prior to analysis: 

exp (mR ± lsd(GR;2;97.5)) For instance, Niacin has equivalence limits which, when back-transformed 
(effectively as geometric means) onto this natural scale give values of [16.1, 27.1]. These limits are 
shown in the boxplots (Figures 5-7). 

ii. The second scale is the ratio scale where the GMO is compared to the mean of the reference 
(commercial) varieties, in an equivalence test. This may be presented independently of any 
difference test between the GMO and the conventional counterpart, once again through back-
transformed values (effectively as geometric means): 

exp (mG - mR ± lsd(GR;2;97.5)) 

(see Table 4). This scale provides the most direct view whether the difference between GMO and 
reference (commercial) varieties is significant (it is significant if the interval does not contain the value 
1). This scale is therefore best for distinguishing between equivalence categories (ii) and (iii), as 
defined in Section 4.1. For Niacin the equivalence interval on this scale is [0.59, 0.99], so indeed the 
difference is significant and non-equivalence is more likely than not. 

iii. Finally, the equivalence interval can be expressed on the same scale where the GMO is 
compared to the conventional counterpart. This is the presentation method recommended to 
applicants in Section 4.1 and which allows for the need to adjust equivalence limits, so that both 
the difference test and the equivalence test may be visually assessed by the confidence limits for 
the difference test alone. The adjusted equivalence limits are: 

exp ((mG - mC)   +   {[(mR - mG) ±  lsd(GR;2;97.5)] lsd(GC;1;95) / lsd(GR;1;95)}) 

(see Figures 3 and 4); this scale allows a simultaneous presentation of the results for both the 
comparison of GMO with conventional counterpart and the comparison of GMO with the commercial 
reference lines. Therefore it is the easiest scale for performing a test of equivalence by the graphical 
equivalent of the TOST procedure advocated in this opinion (see Figures 3 and 4). This scale is best 
for distinguishing between equivalence categories (i) and (ii), and, similarly when considering 
confidence intervals completely outside the equivalence limits, for distinguishing between equivalence 
categories (iii) and (iv) (see Section 4.1). For the example of Niacin the equivalence interval on this 
scale is [0.88, 1.20] (see Table 5). This equivalence interval overlaps with the confidence interval for 
the comparison of the GMO with its conventional counterpart (which is [0.84, 0.90], see Table 3), 
therefore neither equivalence nor non-equivalence may be proven for this analyte. 

In any case, the three intervals are just adjusted versions of each other and completely equivalent for 
statistical testing as explained more fully in Section 2.2.1. In the current example two cases were 
found where there was a statistically significant difference between the GMO and the references (16:0 
Palmitic and Niacin). For these analytes non-equivalence is more likely than not. For further 
interpretation, boxplots are given in Figure 7. It can be seen that for 16:0 Palmitic, both the GMO and 
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the conventional counterpart are higher than the reference range, therefore on this single endpoint 
GMO and conventional counterpart seem to present the same potential health hazards, if any. It is 
outside the scope of this document to discuss the risk assessment of such cases. For Niacin the 
situation is different. Niacin is found 24% to be lower in the GMO than on average in the commercial 
varieties, and the result is also significantly lower (by 13%) than what is found for the conventional 
counterpart. 

A problem occurs when the variance component between commercial genotypes is estimated to be 
zero. In the current example dataset this occurred with Ash and Phytic Acid. In these cases the 
calculation of standard errors of difference will be based on the assumption that there is no variation 
between the commercial genotypes and standard errors and degrees of freedom are derived from a 
model which omits the random factor for genotypes. This is not a truly believable model, so the 
equivalence intervals calculated are typically too narrow and must not be used (see Figure 7). 

Accepting the calculated equivalence limits as null hypothesis values in a test of equivalence for the 
remaining 49 analytes leads to the conclusion that 44 are proven to be equivalent to the reference 
varieties, whereas for 5 (Lysine, Phosphorus, Potassium, Vitamin B6 and Vitamin E) the equivalence 
is more likely than not, but not strictly proven at the 95 % confidence level. For further interpretation, 
boxplots for these 5 cases are given in Figure 6. 

A small simulation was performed to investigate whether the observed number of significant 
differences between GMO and conventional counterpart (23) is large under the null hypothesis that 
variation between genotypes can be described by a normal distribution with variance Vg on the 
logarithmic scale. Here we take for Vg the quantifications as obtained with the mixed model (Table 2). 
Under this null hypothesis and ignoring further estimation error, differences d between any two 
varieties would have a normal distribution with variance 2Vg. In 1000 iterations random values for d 
were sampled from this distribution for all analytes, and a two-sided t test at the 95% confidence level 
was performed assuming that the seddif and dfdif from the actual experiment were appropriate 
characterisations of residual error. Over the 1000 iterations the average number of significant test 
results was 36 (approximate 95% confidence interval [30, 42]). Therefore, under a null hypothesis 
describing equivalence between all the varieties, the observed number of significant differences 
between GMO and conventional counterpart (23) is relatively small and no source of concern in itself. 

Differences between GMO and conventional counterpart may not be constant over sites. This was 
investigated by fitting additional fixed terms coded as ref_aside.site and ref_aside.genotypegroup.site 
in the mixed model 1, and by performing a Wald test to obtain a p value for the significance of the 
latter term. For 8 analytes the genotype by environment (GxE) interaction was significant (p<0.05), 
and tables with geometric means for these cases are reported in Table 6 as a help in further 
interpretation of the results and risk assessment. Table 7 presents all means and standard errors of 
means per site (on the transformed scale). 

In Table 8 the outcomes are classified according to the outcome types and categories as proposed in 
this opinion. Apart from 2 analytes for which equivalence limits could not well be established, there 
are 44 analytes in category (i, Equivalence), 5 in category (ii, Equivalence more likely than not), 2 in 
category (iii, Non-equivalence more likely than not), and none in category (iv, Non-equivalence). 

The conclusions drawn for this dataset can be summarised as follows: 

1. Twenty-three analytes show statistically significant differences (at the 90% confidence level) 
between GMO and conventional counterpart. The differences varied between -13% and +14%. The 
number of significant results is not a reason of concern considering simulation results allowing for 
natural background variation. 
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2. For two analytes, 16:0 Palmitic and Niacin, a statistically significant deviation (at the 95% 
confidence level) from the reference lines has been found, and non-equivalence is more likely than 
not. Further evaluation is required. 

3. For five analytes, Lysine, Phosphorus, Potassium, Vitamin B6 and Vitamin E, equivalence is more 
likely than not, but a strict proof of equivalence cannot be given. Further evaluation may be 
required. 

4. For two analytes, Ash and Phytic Acid, no proper conclusion on equivalence can be formulated 
because of lack of observable natural variation in the commercial varieties. Further evaluation may 
be required. 

5. For fourty-four analytes (including 20 with significant differences between GMO and conventional 
counterpart) equivalence is established in a formal test of equivalence (at the 95% confidence level) 
using the estimated equivalence limits. 
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Figure 2.  log10 of results for four analytes, grouped by genotypic group (comp=comparator, i.e. the 
conventional counterpart, gmo=GMO, ref=reference). Circles indicate visually identified outliers. 
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Figure 3. Part 1 of overview example comparative analysis. Circles and bars represent point estimate and 90 % 
confidence interval for ratio GMO to conventional counterpart. Diamonds represent adjusted equivalence limits 
based on reference varieties. Colours represent different types of outcome. Green: 1; Blue: 2; Black: 3-4 and 
cases with genotype variance (Vg) estimated zero; Red: 5-7. 
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Figure 4. Part 2 of overview example comparative analysis. Circles and bars represent point estimate and 95 % 
confidence interval for ratio GMO to conventional counterpart. Diamonds represent adjusted equivalence limits 
based on reference varieties. Colours represent different types of outcome. Green: 1; Blue: 2; Black: 3-4 and 
cases with genotype variance (Vg) estimated zero; Red: 5-7. 
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Figure 5a.  Boxplots (part 1) for cases with significant differences to comparator (i.e. the conventional 
counterpart), but equivalence to commercial varieties. Note that these are presented on the raw, natural scale and 
that therefore no adjustment to the equivalence limits is required.  The boxplots comprise schematic box-and-
whisker diagrams. Each box extends from the lower to the upper quartile (p25 to p75) and the line in the middle 
is the median (p50). The whiskers extend to extreme data points (minimum and maximum), unless points are 
farther away from the quartiles than 1.5 times the box length, in which case the points are shown separately as 
crosses and the whiskers only cover the remaining points. comp=comparator; gmo=GMO; ref= reference lines. 
Additional thicker bars in the boxplot for references represent geometric mean and calculated equivalence limits. 
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Figure 5b. Boxplots (part 2) for cases with significant differences to comparator(i.e. the conventional 
counterpart), but equivalence to commercial varieties. Note that these are presented on the raw, natural scale and 
that therefore no adjustment to the equivalence limits is required.  The boxplots comprise schematic box-and-
whisker diagrams. Each box extends from the lower to the upper quartile (p25 to p75) and the line in the middle 
is the median (p50). The whiskers extend to extreme data points (minimum and maximum), unless points are 
farther away from the quartiles than 1.5 times the box length, in which case the points are shown separately as 
crosses  and the whiskers only cover the remaining points. comp=comparator; gmo=GMO; ref= reference lines. 
Additional thicker bars in the boxplot for references represent geometric mean and calculated equivalence limits. 
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Figure 6. Boxplots for cases with equivalence more likely than not, but unproven (category (ii)). Note that these 
are presented on the raw, natural scale and that therefore no adjustment to the equivalence limits is required. The 
boxplots comprise schematic box-and-whisker diagrams. Each box extends from the lower to the upper quartile 
(p25 to p75) and the line in the middle is the median (p50). The whiskers extend to extreme data points 
(minimum and maximum), unless points are farther away from the quartiles than 1.5 times the box length, in 
which case the points are shown separately as crosses and the whiskers only cover the remaining points. 
comp=comparator; gmo=GMO; ref= reference lines. Additional thicker bars in the boxplot for references 
represent geometric mean and calculated equivalence limits. 
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Figure 7. Boxplots for cases with non-equivalence more likely than not (category (iii)) or an impossibility to 
judge equivalence due to a zero estimate for variance of genotypes.  Note that these are presented on the raw, 
natural scale and that therefore no adjustment to the equivalence limits is required. The boxplots comprise 
schematic box-and-whisker diagrams. Each box extends from the lower to the upper quartile (p25 to p75) and 
the line in the middle is the median (p50). The whiskers extend to extreme data points (minimum and 
maximum), unless points are farther away from the quartiles than 1.5 times the box length, in which case the 
points are shown separately as crosses and the whiskers only cover the remaining points. comp=comparator; 
gmo=GMO; ref= reference lines. Additional thicker bars in the boxplot for references represent geometric mean 
and calculated equivalence limits. 
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Table 1:  Geometric means for comparator (Gmcomp=exp(mC)), GMO (Gmgmo=exp(mG)) and 
commercial varieties (Gmref=exp(mR)), where the coding notation Gmcomp is used to represent the 
back-transformed geometric mean of the comparator, etc 

 

Analyte Gmcomp Gmgmo Gmref 
16:0 Palmitic 0.396 0.409 0.296 
16:1 Palmitoleic 0.004 0.004 0.004 
18:0 Stearic 0.047 0.047 0.056 
18:1 Oleic 0.871 0.935 0.812 
18:2 Linoleic 1.512 1.492 1.675 
18:3 Linolenic 0.034 0.031 0.034 
20:0 Arachidic 0.013 0.013 0.013 
20:1 Eicosenoic 0.011 0.011 0.01 
22:0 Behenic 0.005 0.005 0.005 
Acid Detergent 
Fiber 3.52 3.884 3.523 

Alanine 6.172 6.366 6.999 
Arginine 3.641 3.816 4.153 
Ash 1.13 1.167 1.27 
Aspartic Acid 5.281 5.453 5.967 
Calcium 51.015 49.108 42.441 
Carbohydrates 75.683 75.084 74.458 
Copper 1.161 1.242 1.322 
Cystine 1.699 1.689 1.819 
Ferulic Acid 2007.963 1746.716 1840.686 
Folic Acid 0.543 0.618 0.573 
Glutamic Acid 15.536 16.056 17.57 
Glycine 3.063 3.172 3.395 
Histidine 2.389 2.452 2.63 
Iron 17.11 16.539 18.846 
Isoleucine 2.747 2.869 3.088 
Leucine 10.231 10.562 11.57 
Lysine 2.602 2.715 2.925 

Analyte Gmcomp Gmgmo Gmref 
Magnesium 1060.466 1103.888 1144.278 
Manganese 6.377 6.705 6.67 
Methionine 1.767 1.718 1.889 
Moisture 11.94 12.093 11.973 
Neutral 
Detergent Fiber 8.629 9.826 9.166 

Niacin 18.241 15.9 20.915 
p-Coumaric 
Acid 154.488 147.921 165.492 

Phenylalanine 4.102 4.255 4.631 
Phosphorus 2799.113 2803.565 3177.435 
Phytic Acid 0.57 0.523 0.658 
Potassium 3242.469 3170.599 3603.606 
Proline 7.29 7.69 7.997 
Protein 8.222 8.449 9.132 
Raffinose 0.113 0.118 0.09 
Serine 4.119 4.242 4.628 
Threonine 2.724 2.858 3.046 
Total Dietary 
Fiber 11.448 12.801 12.301 

Total Fat 2.979 3.138 3.038 
Tryptophan 0.481 0.505 0.543 
Tyrosine 2.674 2.768 3.152 
Valine 3.739 3.902 4.239 
Vitamin B1 0.344 0.352 0.352 
Vitamin B2 1.177 1.103 1.221 
Vitamin B6 4.736 4.723 5.764 
Vitamin E 0.006 0.006 0.009 
Zinc 19.535 19.111 21.338 
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Table 2:  Variance components for random terms in mixed model: genotype (Varg), site (Vars), 
replication within site (Varr) and residual (Var0); see description of mixed statistical model in section 

Analyte Varg Vars Varr Var0 

16:0 Palmitic 0.016 0.0036 0 0.0038 
16:1 Palmitoleic 0.010 0 0.0009 0.0038 
18:0 Stearic 0.027 0.0007 0.0008 0.0055 
18:1 Oleic 0.033 0.0003 0.0003 0.0035 
18:2 Linoleic 0.012 0.0024 0.0009 0.0049 
18:3 Linolenic 0.013 0.0031 0.0009 0.0047 
20:0 Arachidic 0.010 0.0015 0.0008 0.0035 
20:1 Eicosenoic 0.018 0.0035 0.0006 0.0057 
22:0 Behenic 0.011 0.0030 0.0005 0.0026 
Acid Detergent Fiber 0.007 0.0004 0 0.0271 
Alanine 0.012 0.0018 0.0011 0.0020 
Arginine 0.003 0.0003 0.0003 0.0025 
Ash 0 0.0059 0.0005 0.0110 
Aspartic Acid 0.008 0.0005 0.0006 0.0014 
Calcium 0.026 0.0122 0 0.0043 
Carbohydrates 0.000 0.0002 0.0000 0.0000 
Copper 0.039 0 0 0.0092 
Cystine 0.005 0.0003 0.0010 0.0019 
Ferulic Acid 0.013 0.0043 0.0005 0.0081 
Folic Acid 0.013 0 0.0014 0.0797 
Glutamic Acid 0.015 0.0018 0.0015 0.0023 
Glycine 0.002 0.0002 0.0004 0.0013 
Histidine 0.007 0 0.0007 0.0019 
Iron 0.014 0.0122 0 0.0094 
Isoleucine 0.013 0.0001 0.0015 0.0029 
Leucine 0.019 0.0041 0.0018 0.0027 
Lysine 0.001 0.0002 0 0.0023 

Analyte Varg Vars Varr Var0 

Magnesium 0.007 0.0003 0.0000 0.0019 
Manganese 0.034 0.0024 0.0009 0.0039 
Methionine 0.013 0.0020 0.0018 0.0031 
Moisture 0.001 0.0071 0 0.0007 
Neutral Detergent Fiber 0.004 0.0018 0.0016 0.0153 
Niacin 0.013 0.0021 0.0004 0.0025 
p-Coumaric Acid 0.057 0.0060 0.0000 0.0113 
Phenylalanine 0.015 0.0022 0.0013 0.0020 
Phosphorus 0.004 0.0026 0 0.0020 
Phytic Acid 0 0.0003 0.0095 0.0319 
Potassium 0.003 0.008 0 0.0015 
Proline 0.014 0 0.0020 0.0026 
Protein 0.009 0.0004 0.0007 0.0013 
Raffinose 0.043 0.0178 0 0.0284 
Serine 0.009 0.0034 0.0014 0.0023 
Threonine 0.006 0 0.0008 0.0024 
Total Dietary Fiber 0.005 0.0025 0.0009 0.0158 
Total Fat 0.010 0.0017 0.0004 0.0022 
Tryptophan 0.002 0.0003 0.0003 0.0044 
Tyrosine 0.011 0.0032 0.0006 0.0147 
Valine 0.008 0 0.0009 0.0021 
Vitamin B1 0.008 0.000 0.0006 0.0032 
Vitamin B2 0.003 0.0180 0 0.0078 
Vitamin B6 0.009 0.0093 0.0003 0.0028 
Vitamin E 0.026 0.0003 0.0001 0.0097 
Zinc 0.014 0.0019 0.0002 0.0034 
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Table 3:  Assessment of differences GMO vs. comparator. sed(GC;1;95) and lsd(GC;1;95) are on ln 
scale, ratio, and 90% confidence limits (low and upp) are back-transformed. See description of mixed 
statistical model in section 5.1 and see Figures 3 and 4 for graphical representation.

Analyte ratio low upp sed(GC;1;95) df(GC;1) lsd(GC;1;95) 
16:0 Palmitic 1.034 0.9887 1.081 0.02658 49.3 0.04455 
16:1 Palmitoleic 0.999 0.9558 1.045 0.02638 38.7 0.04445 
18:0 Stearic 1.008 0.9538 1.066 0.03307 41.7 0.05562 
18:1 Oleic 1.074 1.0294 1.121 0.02538 42.1 0.04268 
18:2 Linoleic 0.987 0.9366 1.04 0.03121 42.2 0.0525 
18:3 Linolenic 0.904 0.8606 0.95 0.02942 39.9 0.04954 
20:0 Arachidic 1.034 0.9906 1.079 0.02545 41.5 0.04282 
20:1 Eicosenoic 0.995 0.9419 1.051 0.03253 41.4 0.05473 
22:0 Behenic 0.946 0.9117 0.981 0.0218 41.4 0.03668 
Acid Detergent 1.103 0.9805 1.241 0.07046 51.9 0.118 
Alanine 1.031 0.9986 1.065 0.0192 41.4 0.03231 
Arginine 1.048 1.0107 1.087 0.02153 41.9 0.03622 
Ash 1.033 0.958 1.114 0.04498 54.6 0.07527 
Aspartic Acid 1.033 1.0049 1.061 0.0161 41.4 0.02709 
Calcium 0.963 0.9184 1.009 0.02801 48.5 0.04697 
Carbohydrates 0.992 0.9875 0.997 0.00274 42 0.00461 
Copper 1.069 0.9963 1.148 0.04221 51 0.07072 
Cystine 0.994 0.9636 1.026 0.01863 40.1 0.03137 
Ferulic Acid 0.87 0.8132 0.931 0.04008 41.8 0.06743 
Folic Acid 1.138 0.929 1.395 0.12096 44.1 0.20323 
Glutamic Acid 1.033 0.9984 1.07 0.02055 41.4 0.03458 
Glycine 1.035 1.0084 1.063 0.01571 40.2 0.02644 
Histidine 1.026 0.994 1.06 0.01903 40.7 0.03203 
Iron 0.967 0.9015 1.036 0.04159 49.4 0.06972 
Isoleucine 1.044 1.0045 1.086 0.0232 41.6 0.03903 
Leucine 1.032 0.9942 1.072 0.02241 41.3 0.03771 
Lysine 1.043 1.0084 1.08 0.02037 48.8 0.03416 
Magnesium 1.041 1.0089 1.074 0.01863 42.6 0.03132 
Manganese 1.051 1.0047 1.1 0.02702 41.1 0.04546 
Methionine 0.972 0.9338 1.012 0.02398 41.1 0.04035 
Moisture 1.013 0.9938 1.032 0.0113 49.5 0.01894 
NeutralDeterFiber 1.139 1.0413 1.245 0.05322 43.2 0.08946 
Niacin 0.872 0.8405 0.904 0.0216 41.7 0.03633 
p-Coumaric Acid 0.957 0.8867 1.034 0.04565 42.1 0.07677 
Phenylalanine 1.037 1.0043 1.071 0.01921 41.4 0.03232 
Phosphorus 1.002 0.9698 1.034 0.01923 48.5 0.03224 
Phytic Acid 0.919 0.8042 1.049 0.07949 53.2 0.13307 
Potassium 0.978 0.9509 1.006 0.01665 47.9 0.02792 
Proline 1.055 1.0166 1.095 0.02199 41.9 0.037 
Protein 1.028 1.001 1.055 0.01566 41.2 0.02635 
Raffinose 1.036 0.9177 1.17 0.07232 49.1 0.12125 
Serine 1.03 0.9944 1.067 0.02087 41.1 0.03512 
Threonine 1.049 1.0131 1.087 0.02094 41.5 0.03523 
Total Dietary 1.118 1.0211 1.225 0.05404 41.2 0.09092 
Total Fat 1.054 1.0181 1.09 0.02035 41.9 0.03422 
Tryptophan 1.049 1.0002 1.101 0.02851 44 0.04791 
Tyrosine 1.035 0.9483 1.13 0.05215 44.4 0.0876 
Valine 1.043 1.0096 1.078 0.0196 41.8 0.03296 
Vitamin B1 1.023 0.9818 1.065 0.02433 43.3 0.0409 
Vitamin B2 0.938 0.8799 0.999 0.03784 49 0.06344 
Vitamin E 0.953 0.8874 1.023 0.04217 42.5 0.0709 
Vitamin B6 0.997 0.9597 1.037 0.0229 41.6 0.03853 
Zinc 0.978 0.9381 1.02 0.02495 42.5 0.04195 
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Table 4: 95% Equivalence limits (low and upp) calculated on the scale of the ratio of GMO to 
reference mean. The point estimate of this ratio itself is given in the column ratioThe width of the 
interval depends on the standard error of difference for equivalence (sed(GR;2;97.5), given on 
logarithmic scale), and the degrees of freedom for equivalence (df(GR;2)) calculated by the Kenward-
Roger method See text in section 5.1 for further explanation.1 

Analyte ratio low upp sed(GR;2;97.5) df(GR;2) lsd(GR;2;97.5) 
16:0 Palmitic 1.3811 1.0317 1.849 0.1317 10.5 0.2917 
16:1 Palmitoleic 0.9982 0.7841 1.271 0.1055 8.4 0.2414 
18:0 Stearic 0.8355 0.57 1.225 0.1736 10.9 0.3824 
18:1 Oleic 1.1519 0.7595 1.747 0.1897 11.2 0.4165 
18:2 Linoleic 0.8908 0.6886 1.152 0.1155 10 0.2574 
18:3 Linolenic 0.9234 0.7009 1.216 0.1221 9.1 0.2757 
20:0 Arachidic 0.9931 0.7816 1.262 0.1075 10 0.2395 
20:1 Eicosenoic 1.11 0.8068 1.527 0.1432 10 0.3191 
22:0 Behenic 0.9766 0.7672 1.243 0.1089 10.4 0.2414 
Acid Detergent Fiber 1.1026 0.8373 1.452 0.1027 4.4 0.2752 
Alanine 0.9096 0.7052 1.173 0.1154 10.8 0.2545 
Arginine 0.9188 0.8077 1.045 0.0558 7.9 0.1289 
Ash 1 0.9187 0.858 0.984 0.0341 53.6 0.0683 
Aspartic Acid 0.9138 0.7455 1.12 0.0921 10.7 0.2035 
Calcium 1.1571 0.7993 1.675 0.1673 10.6 0.3699 
Carbohydrates 1.0084 0.9895 1.028 0.0083 8.2 0.019 
Copper 0.9395 0.5947 1.484 0.2073 10.8 0.4572 
Cystine 0.9286 0.7797 1.106 0.0779 9.5 0.1748 
Ferulic Acid 0.9489 0.7179 1.254 0.1234 9 0.2791 
Folic Acid 1.0786 0.6948 1.674 0.1515 3.6 0.4397 
Glutamic Acid 0.9138 0.6908 1.209 0.127 10.9 0.2798 
Glycine 0.9343 0.8292 1.053 0.0525 8.8 0.1193 
Histidine 0.9325 0.7711 1.128 0.0853 10 0.1901 
Iron 0.8776 0.6544 1.177 0.1288 8.6 0.2934 
Isoleucine 0.9292 0.7137 1.21 0.1192 10.5 0.2638 
Leucine 0.9129 0.6673 1.249 0.1422 10.9 0.3134 
Lysine 0.9282 0.8532 1.01 0.0322 4.7 0.0843 
Magnesium 0.9647 0.796 1.169 0.0863 10 0.1922 
Manganese 1.0053 0.6585 1.535 0.1922 11 0.4231 
Methionine 0.9095 0.7004 1.181 0.1177 10.3 0.2612 
Moisture 1.01 0.9357 1.09 0.0336 8.6 0.0765 
Neutral Detergent Fiber 1.072 0.8703 1.32 0.0778 4.4 0.2084 
Niacin 0.7602 0.5862 0.986 0.1178 10.8 0.2599 
p-Coumaric Acid 0.8938 0.5145 1.553 0.2498 10.6 0.5523 
Phenylalanine 0.9187 0.6965 1.212 0.1258 11 0.2769 
Phosphorus 0.8823 0.7537 1.033 0.0694 8.8 0.1575 
Phytic Acid 1 0.7958 0.7082 0.894 0.0581 52.2 0.1166 
Potassium 0.8798 0.7675 1.009 0.0595 8.2 0.1366 
Proline 0.9616 0.7333 1.261 0.1227 10.7 0.2711 
Protein 0.9252 0.7454 1.148 0.098 10.8 0.2161 
Raffinose 1.3123 0.7939 2.169 0.2218 8.9 0.5025 
Serine 0.9167 0.7343 1.144 0.0998 10.2 0.2218 
Threonine 0.9383 0.7788 1.13 0.0834 9.8 0.1863 
Total Dietary Fiber 1.0407 0.8284 1.307 0.087 4.7 0.2281 
Total Fat 1.033 0.8173 1.306 0.1062 10.8 0.2342 
Tryptophan 0.9292 0.8205 1.052 0.0487 5.1 0.1244 
Tyrosine 0.8782 0.6674 1.156 0.117 7.3 0.2745 
Valine 0.9203 0.7477 1.133 0.0936 10.3 0.2078 
Vitamin B1 0.9999 0.8059 1.241 0.0972 10.3 0.2157 
Vitamin B2 0.9036 0.7671 1.064 0.0611 4.4 0.1637 
Vitamin B6 0.8194 0.6529 1.028 0.1025 10.4 0.2272 
Vitamin E 0.6908 0.4718 1.011 0.1709 9.9 0.3813 
Zinc 0.8956 0.6814 1.177 0.1225 9.9 0.2734 

 

Confidence intervals not trustworthy, because the estimate of the variance between commercial genotypes was 0 and sed is 
based on lower strata (note also the high df) 
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Table 5: Assessment of equivalences on the scale GMO vs. comparator. seds and lsds are on ln 
scale, adjusted equivalence limits are back-transformed. See description of mixed statistical model in 
section 5.1 and see Figures 3 and 4 for graphical representation. 

Analyte sed(GR;1;95) df(GR;1) lsd(GR;1;95) lsd(GC;1;95)/ 
lsd(GR;1;95) 

Eq.limit low 
adjusted 

Eq.limit upp 
adjusted 

16:0 Palmitic 0.04038 17.9 0.07004 0.6361 0.6993 1.013 
16:1 Palmitoleic 0.03628 16.5 0.06322 0.7032 0.8444 1.186 
18:0 Stearic 0.05214 17.1 0.09067 0.6135 0.8904 1.424 
18:1 Oleic 0.0541 14.5 0.09505 0.449 0.8362 1.215 
18:2 Linoleic 0.03815 21.9 0.06552 0.8012 0.8811 1.331 
18:3 Linolenic 0.03924 18.9 0.06787 0.7299 0.7838 1.172 
20:0 Arachidic 0.03437 19.9 0.05928 0.7222 0.8741 1.235 
20:1 Eicosenoic 0.04525 19.1 0.07822 0.6997 0.7398 1.156 
22:0 Behenic 0.0333 17.6 0.05781 0.6344 0.8238 1.119 
Acid Detergent 0.05871 49.4 0.09842 1.199 0.7055 1.365 
Alanine 0.03396 15.8 0.05934 0.5444 0.9455 1.247 
Arginine 0.02181 30.9 0.03698 0.9793 1.0035 1.292 
Ash 0.03408 53.6 0.05704 1.3196 NA NA 
Aspartic Acid 0.02737 16.2 0.04775 0.5673 0.9682 1.22 
Calcium 0.04933 15.6 0.08626 0.5445 0.7269 1.088 
Carbohydrates 0.003 25.8 0.00512 0.9005 0.968 1.002 
Copper 0.06325 18.1 0.10965 0.6449 0.8289 1.495 
Cystine 0.02497 19.4 0.04314 0.7272 0.9241 1.192 
Ferulic Acid 0.0437 25.3 0.07461 0.9037 0.7088 1.174 
Folic Acid 0.09769 50.1 0.16371 1.2414 0.6004 1.789 
Glutamic Acid 0.03721 15.6 0.06506 0.5314 0.9344 1.258 
Glycine 0.01823 23.8 0.0312 0.8476 0.9914 1.214 
Histidine 0.02682 18.9 0.04639 0.6905 0.9446 1.228 
Iron 0.04621 25.8 0.07884 0.8843 0.837 1.406 
Isoleucine 0.03621 17.2 0.06294 0.6202 0.9282 1.288 
Leucine 0.04149 15.4 0.07261 0.5194 0.9198 1.274 
Lysine 0.0173 48.5 0.02901 1.1774 1.0314 1.258 
Magnesium 0.02689 18.2 0.04661 0.672 0.9372 1.213 
Manganese 0.05516 14.5 0.09692 0.4691 0.86 1.279 
Methionine 0.03613 17.7 0.06271 0.6434 0.8736 1.223 
Moisture 0.01227 27.4 0.02089 0.9068 0.9365 1.076 
Neutral Detergent 0.04428 47 0.0743 1.2042 0.8149 1.346 
Niacin 0.03534 16.9 0.0615 0.5908 0.879 1.195 
p-Coumaric Acid 0.0749 16.7 0.13043 0.5886 0.739 1.416 
Phenylalanine 0.03652 15.2 0.06397 0.5052 0.9413 1.245 
Phosphorus 0.0234 21.7 0.0402 0.8019 0.976 1.256 
Phytic Acid 0.05812 52.2 0.09733 1.3671 NA NA 
Potassium 0.02013 20.8 0.03465 0.8057 0.9711 1.21 
Proline 0.03664 16.5 0.06385 0.5794 0.9222 1.263 
Protein 0.02864 15.4 0.05013 0.5256 0.9556 1.199 
Raffinose 0.07993 27.2 0.1361 0.8909 0.5197 1.272 
Serine 0.03083 17.9 0.05348 0.6566 0.9427 1.261 
Threonine 0.02716 20.8 0.04675 0.7536 0.9568 1.267 
Total Dietary 0.04607 45.2 0.07736 1.1753 0.8161 1.395 
Total Fat 0.03215 17.4 0.05585 0.6128 0.8947 1.192 
Tryptophan 0.0247 41 0.04157 1.1525 0.9894 1.318 
Tyrosine 0.04963 35 0.08385 1.0448 0.8899 1.579 
Valine 0.02894 18.2 0.05015 0.6574 0.9613 1.263 
Vitamin B1 0.03163 21.4 0.05438 0.7521 0.8697 1.203 
Vitamin B2 0.0323 45.6 0.05423 1.1698 0.8717 1.278 
Vitamin B6 0.03223 19.4 0.05567 0.6921 0.9782 1.34 
Vitamin E 0.0554 20.7 0.09539 0.7433 0.9446 1.665 
Zinc 0.03763 17.1 0.06544 0.641 0.8811 1.251 
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Table 6: Analytes with a significant (p<0.05) GxE interaction (p value given), and geometric 
means per site (rows) and genotypes (first column: comparator, second column: GMO). See 
description of mixed statistical model in section 5.1. 

 20:0 Arachidic   p=0.049 

             1    0.01224  0.01172 

             2    0.01193  0.01389 

             3    0.01334  0.01335 

             4    0.01242  0.01283 

 Ash   p=0.026 

             1      1.112    1.079 

             2      1.215    1.199 

             3      1.279    1.162 

             4      0.977    1.232 

 Carbohydrates   p=0.043 

             1      74.63    73.70 

             2      75.96    74.73 

             3      75.35    75.63 

             4      76.67    76.30 

 Ferulic Acid   p=0.036 

             1       1849     1686 

             2       2059     1430 

             3       2038     1931 

             4       2242     1999 

 Folic Acid    p=0.011 

             1     0.6622   0.4817 

             2     0.5206   0.7715 

             3     0.3684   0.7524 

             4     0.5931   0.5226 

 Isoleucine   p=0.037 

             1     2.820     2.829 

             2     2.641     3.059 

             3     2.559     2.762 

             4     2.886     2.836 

 Neutral Detergent Fiber   p=0.003 

             1     8.547    12.288 

             2     8.953     7.760 

             3     8.834    10.753 

             4     8.485     9.090 

Total Dietary Fiber    p=0.021 

             1    10.21      14.45 

             2    10.69      10.38 

             3    12.55      14.23 

             4    12.67      12.59 
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Table 7:  Geometric means and geometric standard errors of means (sem) per site (in columns 
labelled 1-4) for comparator (comp) and GMO. GM=exp(mean) and GSEM=exp(sem) where mean 
and sem refer to quantities calculated at the logarithmic scale. Approximate 95% confidence interval 
for each GM is [GM x GSEM-2, GM x GSEM2]. See description of mixed statistical model in section 
5.1. 

Analyte Line geometric mean (GM) geometric sem (GSEM) 
1 2 3 4 1 2 3 4 

16:0 Palmitic comp 0.3523 0.407 0.4185 0.41 1.0737 1.0783 1.0783 1.0737 
16:0 Palmitic GMO 0.3733 0.4488 0.4074 0.4099 1.0737 1.0737 1.0737 1.0737 
16:1 Palmitoleic comp 0.0038 0.0036 0.0037 0.0036 1.0777 1.0828 1.0829 1.0777 
16:1 Palmitoleic GMO 0.0035 0.0038 0.0037 0.0038 1.0777 1.0777 1.0777 1.0777 
18:0 Stearic comp 0.0446 0.045 0.0499 0.0477 1.0972 1.0972 1.0972 1.0911 
18:0 Stearic GMO 0.0434 0.0512 0.0469 0.0475 1.0911 1.0911 1.0911 1.0911 
18:1 Oleic comp 0.866 0.8498 0.894 0.8689 1.0709 1.0755 1.0756 1.0709 
18:1 Oleic GMO 0.8823 1.0155 0.9131 0.9348 1.0709 1.0709 1.0709 1.0709 
18:2 Linoleic comp 1.469 1.5799 1.5032 1.483 1.0929 1.0929 1.0929 1.0871 
18:2 Linoleic GMO 1.4386 1.7092 1.4059 1.4349 1.0871 1.0871 1.0871 1.0871 
18:3 Linolenic comp 0.033 0.0349 0.0353 0.0336 1.0809 1.0863 1.0864 1.0809 
18:3 Linolenic GMO 0.0279 0.0358 0.0313 0.0297 1.0809 1.0809 1.0809 1.0809 
20:0 Arachidic comp 0.0122 0.0119 0.0133 0.0124 1.0688 1.0733 1.0734 1.0688 
20:0 Arachidic GMO 0.0117 0.0139 0.0133 0.0128 1.0688 1.0688 1.0688 1.0688 
20:1 Eicosenoic comp 0.0103 0.0108 0.0116 0.011 1.0915 1.0976 1.0976 1.0915 
20:1 Eicosenoic GMO 0.0094 0.012 0.0112 0.0111 1.0915 1.0915 1.0915 1.0915 
22:0 Behenic comp 0.0052 0.0055 0.0055 0.0054 1.0604 1.0644 1.0644 1.0604 
22:0 Behenic GMO 0.0046 0.0054 0.0053 0.0052 1.0604 1.0604 1.0604 1.0604 
Acid Detergent comp 3.3755 3.9577 3.5598 3.371 1.2127 1.227 1.227 1.2127 
Acid Detergent GMO 4.4561 3.5188 4.053 3.5809 1.2127 1.2127 1.2127 1.2127 
Alanine comp 6.1783 6.3636 5.747 6.3188 1.0557 1.0592 1.0593 1.0557 
Alanine GMO 6.2663 6.9212 6.0936 6.216 1.0557 1.0557 1.0557 1.0557 
Arginine comp 3.4874 3.6121 3.4367 3.9932 1.0554 1.059 1.0591 1.0554 
Arginine GMO 3.757 3.85 3.7828 3.8738 1.0554 1.0554 1.0554 1.0554 
Ash comp 1.1122 1.2149 1.2794 0.9768 1.114 1.1216 1.1217 1.114 
Ash GMO 1.0791 1.1986 1.1624 1.2324 1.114 1.114 1.114 1.114 
Aspartic Acid comp 5.1443 5.3191 5.0386 5.5297 1.0443 1.0471 1.0472 1.0443 
Aspartic Acid GMO 5.2465 5.7101 5.402 5.463 1.0443 1.0443 1.0443 1.0443 
Calcium comp 48.6135 57.1976 43.1981 55.2638 1.075 1.0797 1.0797 1.075 
Calcium GMO 48.0419 58.9964 42.2952 48.5132 1.075 1.075 1.075 1.075 
Carbohydrates comp 74.632 75.9555 75.3542 76.6661 1.0066 1.007 1.007 1.0066 
Carbohydrates GMO 73.6996 74.7317 75.6331 76.2989 1.0066 1.0066 1.0066 1.0066 
Copper comp 1.1924 1.2133 1.0941 1.1347 1.1161 1.1236 1.1236 1.1236 
Copper GMO 1.1855 1.2149 1.198 1.3788 1.1161 1.1161 1.1161 1.1161 
Cystine comp 1.732 1.6747 1.6404 1.7428 1.0544 1.0578 1.0579 1.0544 
Cystine GMO 1.703 1.6947 1.5984 1.7661 1.0544 1.0544 1.0544 1.0544 
Ferulic Acid comp 1848.967 2058.695 2037.814 2242.183 1.0884 1.1102 1.0943 1.0884 
Ferulic Acid GMO 1686.142 1429.616 1931.492 1999.323 1.0884 1.0884 1.0884 1.0884 
Folic Acid comp 0.6622 0.5206 0.3684 0.5931 1.3577 1.3837 1.3837 1.3577 
Folic Acid GMO 0.4817 0.7715 0.7524 0.5226 1.3577 1.3577 1.3577 1.3577 
Glutamic Acid comp 15.688 16.0293 14.4335 15.8283 1.0612 1.0651 1.0652 1.0612 
Glutamic Acid GMO 15.932 17.3535 15.2838 15.7264 1.0612 1.0612 1.0612 1.0612 
Glycine comp 2.9947 3.0362 2.8948 3.283 1.0418 1.0445 1.0445 1.0418 
Glycine GMO 3.0761 3.2185 3.1497 3.2455 1.0418 1.0418 1.0418 1.0418 
Histidine comp 2.3813 2.3527 2.2401 2.5318 1.053 1.0563 1.0564 1.053 
Histidine GMO 2.4295 2.5324 2.3923 2.4563 1.053 1.053 1.053 1.053 
Iron comp 20.5231 16.5481 14.4395 16.775 1.1189 1.1265 1.1265 1.1189 
Iron GMO 17.3006 18.0875 14.5993 16.3788 1.1189 1.1189 1.1189 1.1189 
Isoleucine comp 2.8195 2.6406 2.5589 2.8856 1.0618 1.0656 1.0657 1.0618 
Isoleucine GMO 2.829 3.0591 2.7625 2.8356 1.0618 1.0618 1.0618 1.0618 
Leucine comp 10.5587 10.6517 9.3433 10.2534 1.0666 1.0707 1.0708 1.0666 
Leucine GMO 10.6997 11.7228 9.841 10.0837 1.0666 1.0666 1.0666 1.0666 
Lysine comp 2.541 2.5574 2.4428 2.8164 1.053 1.0564 1.0564 1.053 
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Analyte Line geometric mean (GM) geometric sem (GSEM) 
1 2 3 4 1 2 3 4 

Lysine GMO 2.6524 2.7018 2.7221 2.787 1.053 1.053 1.053 1.053 
Magnesium comp 1029.583 1080.284 1050.303 1079.969 1.053 1.0563 1.0563 1.053 
Magnesium GMO 1059.888 1159.391 1086.656 1112.034 1.053 1.053 1.053 1.053 
Manganese comp 6.5591 6.4184 5.7665 6.734 1.0753 1.0803 1.0803 1.0753 
Manganese GMO 6.9418 7.1551 5.9496 6.838 1.0753 1.0753 1.0753 1.0753 
Methionine comp 1.8314 1.5648 1.7427 1.9091 1.071 1.0756 1.0757 1.071 
Methionine GMO 1.712 1.6016 1.7096 1.8589 1.071 1.071 1.071 1.071 
Moisture comp 13.3322 11.3996 12.2491 10.9997 1.0299 1.0317 1.0317 1.0299 
Moisture GMO 13.6651 11.7975 12.0327 11.0256 1.0299 1.0299 1.0299 1.0299 
Neutral Detergent comp 8.5471 8.9531 8.8343 8.4852 1.1293 1.1381 1.1382 1.1293 
Neutral Detergent GMO 12.2884 7.76 10.7532 9.0896 1.1293 1.1293 1.1293 1.1293 
Niacin comp 17.2959 18.3014 18.3277 19.2263 1.0629 1.067 1.067 1.0629 
Niacin GMO 15.1891 15.2667 16.0604 17.1608 1.0629 1.0629 1.0629 1.0629 
p-Coumaric Acid comp 155.6574 131.9272 136.3596 191.097 1.1177 1.1254 1.1254 1.1177 
p-Coumaric Acid GMO 145.3234 126.3005 154.8215 168.4816 1.1177 1.1177 1.1177 1.1177 
Phenylalanine comp 4.1835 4.2106 3.8323 4.1327 1.0559 1.0594 1.0595 1.0559 
Phenylalanine GMO 4.2861 4.6191 4.0376 4.1005 1.0559 1.0559 1.0559 1.0559 
Phosphorus comp 2645.937 2751.999 2870 2926.572 1.0537 1.0571 1.0571 1.0537 
Phosphorus GMO 2571.828 2808.924 2859.64 2990.537 1.0537 1.0537 1.0537 1.0537 
Phytic Acid comp 0.5367 0.6714 0.6613 0.5324 1.2416 1.2586 1.3075 1.2416 
Phytic Acid GMO 0.5626 0.5697 0.4593 0.51 1.2416 1.2416 1.2416 1.2416 
Potassium comp 2986.567 3161.202 3384.908 3451.695 1.0463 1.0492 1.0492 1.0463 
Potassium GMO 2815.598 3030.508 3372.244 3512.048 1.0463 1.0463 1.0463 1.0463 
Proline comp 7.3072 7.3341 6.871 7.5242 1.0654 1.0693 1.0694 1.0654 
Proline GMO 7.6084 8.1899 7.5316 7.4517 1.0654 1.0654 1.0654 1.0654 
Protein comp 8.1201 8.4489 7.9523 8.386 1.0453 1.0481 1.0482 1.0453 
Protein GMO 8.5555 8.8292 8.1298 8.2988 1.0453 1.0453 1.0453 1.0453 
Raffinose comp 0.104 0.126 0.0862 0.1388 1.2135 1.2278 1.2278 1.2135 
Raffinose GMO 0.0995 0.1351 0.1107 0.1282 1.2135 1.2135 1.2135 1.2135 
Serine comp 4.1717 4.3768 3.6869 4.189 1.0619 1.0658 1.0659 1.0619 
Serine GMO 4.1366 4.6562 4.0165 4.1865 1.0619 1.0619 1.0619 1.0619 
Threonine comp 2.5739 2.6989 2.7115 2.9123 1.0581 1.0619 1.062 1.0581 
Threonine GMO 2.8464 2.9543 2.7599 2.8756 1.0581 1.0581 1.0581 1.0581 
Total Dietary Fiber comp 10.215 10.686 12.5464 12.6739 1.1343 1.1434 1.1435 1.1343 
Total Dietary Fiber GMO 14.4456 10.3752 14.2321 12.5904 1.1343 1.1343 1.1343 1.1343 
Total Fat comp 2.7593 3.0895 3.1242 2.9917 1.0533 1.0567 1.0568 1.0533 
Total Fat GMO 2.9795 3.4425 3.0225 3.1293 1.0533 1.0533 1.0533 1.0533 
Tryptophan comp 0.493 0.4741 0.4598 0.4902 1.086 1.0916 1.0916 1.086 
Tryptophan GMO 0.5104 0.5055 0.4823 0.5222 1.086 1.086 1.086 1.086 
Tyrosine comp 2.3683 2.9282 2.8336 2.7466 1.1438 1.1534 1.1535 1.1438 
Tyrosine GMO 2.9766 2.9338 2.489 2.7004 1.1438 1.1438 1.1438 1.1438 
Valine comp 3.7585 3.6025 3.5535 3.9497 1.0525 1.0558 1.0559 1.0525 
Valine GMO 3.8319 4.0519 3.8355 3.8908 1.0525 1.0525 1.0525 1.0525 
Vitamin B1 comp 0.3566 0.3517 0.3217 0.3433 1.0684 1.0729 1.073 1.0684 
Vitamin B1 GMO 0.3533 0.3531 0.3631 0.3397 1.0684 1.0684 1.0684 1.0684 
Vitamin B2 comp 1.1726 1.0592 0.9628 1.5177 1.1066 1.1135 1.1135 1.1066 
Vitamin B2 GMO 1.0212 1.0681 1.0347 1.3123 1.1066 1.1066 1.1066 1.1066 
Vitamin B6 comp 4.2384 4.5327 4.802 5.4492 1.0683 1.0727 1.0727 1.0683 
Vitamin B6 GMO 4.2988 4.454 4.8347 5.3766 1.0683 1.0683 1.0683 1.0683 
Vitamin E comp 0.0066 0.006 0.0063 0.0063 1.1203 1.1281 1.1281 1.1203 
Vitamin E GMO 0.0064 0.0057 0.0056 0.0064 1.1203 1.1203 1.1203 1.1203 
Zinc comp 19.9744 20.7256 17.9435 19.3028 1.0716 1.0762 1.0762 1.0716 
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Table 8: Analytes classified by outcome category and type (see Section 4.1). 

Category I Category II Category III Category IV Not categorized 
     
Type 1 Type 3 Type 5 Type 7 Vg=0 
16:1 Palmitoleic Phosphorus 16:0 Palmitic - Ash 
18:0 Stearic Potassium   Phytic Acid 
18:2 Linoleic Vitamin B6 Type 6   
20:0 Arachidic Vitamin E Niacin   
20:1 Eicosenoic     
Acid Detergent Fiber Type 4    
Alanine Lysine    
Calcium     
Copper     
Cystine     
Folic Acid     
Glutamic Acid     
Histidine     
Iron     
Leucine     
Methionine     
Moisture     
p-Coumaric Acid     
     
Raffinose     
Serine     
Tyrosine     
Vitamin B1     
Zinc     
     
Type 2     
18:1 Oleic     
18:3 Linolenic     
22:0 Behenic     
Arginine     
Aspartic Acid     
Carbohydrates     
Ferulic Acid     
Glycine     
Isoleucine     
Magnesium     
Manganese     
Neutral Detergent Fiber     
Phenylalanine     
Proline     
Protein     
Threonine     
Total Dietary Fiber     
Total Fat     
Tryptophan     
Valine     
Vitamin B2     

 
 



Statistical considerations for GMOs safety
 

 
55 EFSA Journal 2010; 8(1):1250 

6. Conclusions and Recommendations 

The GMO Panel concludes that whereas general guidance may certainly be given now, it is not 
possible to provide rules for experimental design and analysis that are optimal in every situation. The 
scientific state of the art is not unanimous on approaches for risk assessment and equivalence testing, 
and particular issues are highlighted in this opinion that may be clarified by further research. 
Nevertheless, general rules can be proposed now that may need to be further modified by experience 
gained and development of scientific knowledge, as for all guidance. 

In this section we give as clearly as possible the recommendations resulting from the investigations 
done by Working Group members and discussions in the GMO Panel. 

The recommendations are translated into definite text proposed for incorporation in the draft EC 
Guidelines which are currently under development. 

6.1. Recommendations 

1. Compare the GMO with its conventional counterpart, and with the mean of the commercial 
reference varieties with a history of safe use, by calculating appropriate differences on an 
appropriate scale for all relevant endpoints. Unless inappropriate, logratios (differences on log 
scale) should be employed for quantitative measurements. 

2. Natural variation can arise from both environmental sources (i.e. between different sites and 
different years) and genotypic sources (variation between representative commercial varieties). In a 
proper experimental design the natural variation, free of environmental effects, may be quantified 
from experimental data which include multiple sites and multiple commercial varieties. It is 
recommended to fit linear mixed models for the logarithmically-transformed data including random 
effects for commercial genotypes. 

3. Calculate 90 % confidence limits for these logratios based on a quantification of the experimental 
variation in the combined data of all sites. Other statistical approaches may be possible. 

4. Estimate equivalence limits from the data from the same field trials as those used to test the GM and 
its conventional counterpart, reflecting the range of natural variation expected for those commercial 
reference varieties. 

5. Use the confidence limits calculated in 3 and equivalence limits calculated in 4 to perform a 
difference test and an equivalence test. 

6. Prepare a graph showing the estimated means and confidence intervals for the logratios for all 
relevant endpoints. Label the axis by the amount of change on the natural scale, using percent 
change (e.g.  -20 % and +25 %) for relatively small changes, or factors (e.g. ½ and 2) for larger 
changes. 

7. Adjust the estimated equivalence limits so that a single set of confidence limits for the difference 
test may validly represent both the difference and equivalence test. 

8. Indicate on the graph the zero-difference point (0) and the upper and lower adjusted equivalence 
limits. 

9. Very rarely, the above approach cannot be used to provide good estimates of natural variation to 
base equivalence limits on, and it may then be quantified from other sources (e.g. appropriate 
databases), if and only if the applicant can supply strong justification why it is reasonable to 
assume the representativeness of this information. The intended point of reference for judging 
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equivalence may be either the set of commercial varieties or the conventional counterpart. In 
particular: 

10. When the natural variation is very small or zero, and the calculated equivalence limits are 
considered by experts to have little practical relevance, external data may be used to establish new 
equivalence limits. 

11. For the interpretation, each confidence interval should be compared to 0 (proof of difference) and 
to the equivalence limits (proof of equivalence) consulting the scheme given in Section 4.1 of this 
opinion. The seven possible types of outcome should be interpreted as follows: 

I. Types 1 and 2: the GMO is equivalent to its reference; 

II. Types 3 and 4: equivalence more likely than not, further evaluation may be required; 

III. Types 5 and 6: non-equivalence more likely than not, further evaluation required; 

IV. Type 7: non-equivalence, further evaluation required. 

12. Frequencies of significant results of the proof of difference tests over the complete set of 
considered endpoints should be reported and discussed. 

13. The necessity of further assessment should be based on considering the patterns of observed 
logratios, and further assessments should focus on biological/toxicological relevance, taking safety 
limits into account when available. 

14. When, in the combined data analysis across sites, biologically or toxicologically relevant 
unexplained differences between the GM and its conventional counterpart are demonstrated, then 
further analysis is required to assess to what extent such differences vary across sites. 

15. Experimental designs of field trials must ensure that sufficient replication, different environmental 
conditions and commercial varieties are included to allow adequate quantification of natural 
variation. Specific minimum requirements are outlined in Section 2. 

6.2. Issues for further consideration 

The GMO Panel recognises that its recommendations leave open several issues. Partly these may be 
amenable to further guidance following further investigations. For these open issues applicants should 
find the best possible solutions, and they are encouraged to seek statistical advice to propose 
approaches for specific cases. Among the open issues are the following: 

1. Models for data which cannot readily be transformed to normality: e.g. continuous non-normal data, 
or counts, or quantal, or ordinal data. 

2. Power analysis for mixed model situations. Research is needed to characterize the coverage 
probability of the estimated confidence intervals for small sample sizes, such as three plots, two 
years, and four sites, because the available models are asymptotic. Moreover, research is needed for 
an optimal design, i.e. optimal numbers of plots and sites for a most powerful decision on 
equivalence. 

3. The adaptation of the statistical design and analysis to more complicated designs (e.g. repeated 
measures). 

4. Multiplicity of endpoints. Current recommendations are for single endpoints. When performing 
many simultaneous tests spurious significant results may be expected both in proof of difference 
and proof of equivalence. Further work is needed on how to handle this. 

5. Multivariate analysis may give an alternative approach to the multiplicity issue, but more research is 
needed. 
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